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Цель данного курса - дать студентам и аспирантам, заинтересованным в исследовании слу-
чайных процессов в нелинейных системах, средство для решения практических задач стоха-
стической динамики. В данном курсе рассматриваются только одномерные случайные процес-
сы диффузионного типа. Математически это соответствует случаю одномерных непрерывных
марковских процессов, описываемых уравнением Фоккера-Планка-Колмогорова. В дополне-
ние к основам теории случайных процессов, будут описаны классические методы исследова-
ния уравнения Фоккера-Планка-Колмогорова, а также новые подходы, удобные для решения
прикладных задач. В заключение курса будут описаны интересные индуцированные шумом
эффекты в нелинейных системах, такие как стохастический резонанс, рэтчет эффект, эффект
подавления шума переключающими сигналами, а также описаны прикладные задачи джозеф-
соновской электроники.

I. ВВЕДЕНИЕ

Шум является общим свойством различных процессов в физике, химии и биологии. Шум
возникает при описании макроскопических систем. Если система включает в себя большое
число степеней свобод, она является очень сложной и обычно при еҷ описании следят только
за несколькими наиболее важными переменными. Остальные переменные не принимаются во
внимание и поэтому объявляются "шумом"или "флуктуациями".

Исследование временных масштабов (или скоростей переходов) и эволюций вероятности в
различных мультистабильных системах, находящихся под воздействием шума, является крайне
важным большом числе направлений физики, таких как фазовые переходы, джозефсоновская
электроника, магнитные системы. Одна из пионерских работ в этом направлении была выпол-
нена Крамерсом [1]. Он рассмотрел процесс перехода из одного состояния системы в другое
как процесс броуновской диффузии и использовал уравнение Фоккера-Планка-Колмогорова
для плотности вероятности броуновской частицы для нахождения нескольких приближенных
формул для описания скоростей перехода. Главный подход метода Крамерса - это предполо-
жение, что поток вероятности через потенциальный барьер мал, и в силу этого постоянен.
Это условие применимо только в случае, когда потенциальный барьер достаточно высокий по
сравнению с интенсивностью шума. Для получения точных временных масштабов и плотностей
вероятности необходимо решить нестационарное уравнение Фоккера-Планка-Колмогорова, что
является основной сложностью проблемы исследования переходных процессов диффузионного
типа.

Уравнение Фоккера-Планка-Колмогорова - это уравнение в частных производных. В подав-
ляющем большинстве случаев его аналитическое решение не известно. Также, в многомер-
ном случае даже нахождение стационарного решения удаҷтся не всегда. Поэтому, при анализе
динамики переходных процессов диффузионного типа, наиболее простым подходом является
приближенное нахождение временных характеристик. Следует отметить, что нестационарное
уравнение Фоккера-Планка-Колмогорова простой заменой переменных и заменой действитель-
ного времени на мнимое сводится к нестационарному уравнению Шредингера, так что при
решении этих уравнений исследователь сталкивается с одними и теми же проблемами. Таким
образом, теория случайных процессов в классических системах, и теория квантовых систем
имеют много общего.

Рассматривая процесс одномерной броуновской диффузии (т.е. броуновское движение в пре-
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деле большой вязкости), следует отметить, что для еҷ описания используются различные вре-
менные характеристики, описываемые различным образом (см. обзоры [2], [? ] и книги [4],[5]),
например время жизни метастабильного состояния, или время релаксации к стационарному
состоянию. Часто используемый метод разложения решения в ряд по собственным функциям,
когда характерный временной масштаб (время релаксации) предполагается равным обратному
минимальному ненулевому собственному числу, неприменим для случая больших интенсивно-
стей шума, поскольку тогда высшие собственные числа должны приниматься во внимание. В
случае одномерного уравнения Фоккера-Планка-Колмогорова, моменты времени первого до-
стижения (ВПД) поглощающей границы могут быть вычислены точно, по крайней мере могут
быть выражены в квадратурах [6]. Но при методе ВПД предполагается наличие в системе по-
глощающих границ. Однако, в большом числе прикладных физических задач системы описыва-
ются гладкими потенциальными профилями, не имеющими поглощающих границ, и моменты
ВПД могут дать некорректный результат для исследуемых временных масштабов.

Данный курс, в добавление к классическим методам, представит новые аналитические подхо-
ды для получения точных временных характеристик диффузионных процессов, позволяющие
также в ряде случаев описать эволюцию вероятностей случайных процессов.

II. ДЕЛЬТА-ФУНКЦИЯ И ЕЕ ОСНОВНЫЕ СВОЙСТВА

Необходимым аппаратом для описания случайных процессов является аппарат обобщенных
функций. Прежде всего, для представления дальнейшего материала нам потребуется обсудить
свойства дельта-функции δ(x−a). Дельта-функция δ(x−a) равна нулю везде кроме точки x = a,
в которой она принимает бесконечное значение. Дельта-функция может быть представлена как
предельный случай гауссовского распределения:

δ(x− a) = lim
D→0

1√
2πD

e−
(x−a)2

2D .

Дельта-функция δ(x− a) имеет следующие свойства:
1. Первое интегральное свойство.

+∞∫
−∞

δ(x− a)dx = 1. (1)

Следует отметить, что достаточно рассмотреть этот интеграл только в окрестности точки x =
a:

a+ϵ∫
a−ϵ

δ(x− a)dx = 1.

2. Функция единичного скачка обычно вводится в следующем виде:

1(x− a) ≡
x∫

−∞

δ(y − a)dy =


1, x > a
1/2, x = a
0, x < a

(2)

3. Дельта-функция является четной по отношению к точке a:
a∫

−∞

δ(x− a)dx =

+∞∫
a

δ(x− a)dx = 1/2. (3)
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4. Второе интегральное свойство:

δ(x− a)f(x) = δ(x− a)f(a),

+∞∫
−∞

δ(x− a)f(x)dx = f(a), (4)

a∫
−∞

δ(x− a)f(x)dx =

+∞∫
a

δ(x− a)dx =
1

2
f(a).

5. Если C - константа, то:

δ[C(x− a)] =
1

|C|
δ(x− a). (5)

6. Если α(x) плавная функция и xk - корни уравнения α(x) = 0, расположенные в интервале
(a, b) тогда (третье интегральное свойство):

δ[α(x)] =
∑
k

δ(x−xk)
|α′

x(x)|x=xk

,

b∫
a
f(x)δ[α(x)]dx =

∑
k

f(xk)
|α′

x(x)|x=xk

.
(6)

7. Как выглядит производная дельта-функции? Можно легко взять производную нужного
порядка от гауссовского распределения и устремить дисперсию D к нулю:

Рис. 1: Гауссовское распределение и его производные.

Четвертое интегральное свойство:

+∞∫
−∞

δ(n)(x− y)g(x)dx = (−1)ng(n)(y),

+∞∫
−∞

δ(n)(y − x)g(x)dx = g(n)(y).
(7)
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III. СЛУЧАЙНАЯ ВЕЛИЧИНА И ОДНОМЕРНАЯ ПЛОТНОСТЬ ВЕРОЯТНОСТИ

We call ξ a random variable if the number ξ can not be predicted (for instance because of lack
of initial conditions or of some other unknown factors). By repeating the experiment N times (N
realizations) we obtain N numbers:

ξ1, ξ2, . . . , ξN .

These numbers ξi may take either integer or continuous numbers.
Instead of repeating the experiment with one system N times we may also think that we have an

ensemble of N identical systems and make one experiment for every system.
Whereas the numbers ξ1, ξ2, . . . , ξN can not be predicted, some averages for N → ∞ may be

predicted and should give the same value for identical systems. The simpleast average value is the
mean value

< ξ >= lim
N→∞

1

N
(ξ1 + ξ2 + . . .+ ξN).

A general average value is

< f(ξ) >= lim
N→∞

1

N
(f(ξ1) + f(ξ2) + . . .+ f(ξN)). (8)

where f(ξ) is some arbitrary function.
Probability Density
If we choose the function in (8) the shifted step function

f(ξ) = 1(x− ξ) (9)

we obtain

P (ξ < x)+(1/2)P (ξ = x) =< 1(x−ξ) >= lim
N→∞

[< 1(x−ξ1)+ . . .+ < 1(x−ξN)] = lim
N→∞

M/N. (10)

The definition (10) differs from the usual one by a different weight of the probability at ξ = x. This
is done because our definition of the step function (2). If we would have used 1(x) = 1 for x ≥ 0 and
1(x) = 0 for x < 0 then the left hand side should be replaced by P (ξ ≤ x). For continuous processes
(only such we will consider in the present course), where the probability to find the discrete value x
is usually zero, both definitions agree.

In (10) M is the number of experiments (realizations) where ξ ≤ x. Thus M/N is the relative
frequency where the random variable is equal to or less than x. In the limit N → ∞ this relative
frequency is called the probability P (ξ ≤ x) that the random variable is equal to or less than x. It
follows from (10) that P (ξ ≤ x) must be a nondecreasing function of x with P (ξ ≤ ∞) = 1. The
probability density function Wξ(x) of the random variable ξ is the derivative of P with respect to x

Wξ(x) =
d

dx
P (ξ ≤ x) =

d

dx
< 1(x− ξ) >=<

d

dx
1(x− ξ) >=< δ(x− ξ) >, (11)

where δ(x − ξ) is the Dirac delta function. The probability dP to find the continuous stochastic
variable in the interval x ≤ ξ ≤ x+ dx is given by (assumong that P is differentiable):

P (ξ ≤ x+ dx)− P (ξ ≤ x) =
d

dx
P (ξ ≤ x)dx = Wξ(x)dx.
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The probability density (11) is usually a smooth function for continuous random variables.
The one-dimensional statistical properties of the random variable ξ are completely determined by

by the probability density, because any average can be obtained from Wξ(x) by integration. This is
seen as follows: because of the property (4) we get by taking averages

< f(ξ) >=<
∫
f(x)δ(x− ξ)dx >=

∫
f(x) < δ(x− ξ)dx >=

∫
f(x)Wξ(x)dx. (12)

• The stochastic variable was denoted as ξ, where as the variable in the distribution function
was denoted as x. Further for simplicity we will omit the index ξ of the probabilities and the
probability densities.

IV. TRANSFORMATION OF A RANDOM VARIABLE

If we use the random variable

η = g(ξ)

instead of the random variable ξ, the probability density Wη(y) of the random variable η is, according
to (11),(8), given by

Wη(y) =< δ(y − η) >=< δ(y − g(ξ)) >=
∫

δ(y − g(ξ))Wξ(x)dx. (13)

The last integral is easily evaluated. If gn(y) is the n-th simple root of g(x)− y = 0, then, following
property (6) of the delta function one can get

Wη(y) =
∑
n

Wxi(gn(y))

|g′x(x)|x=xn=gn(y)

. (14)

Home exercise.
Please, calculate from the one-dimensional Maxwell distribution

W (v) =

√
m

2πkT
exp

(
−mv2

2kT

)

the probability density of the energy E = 1
2
mv2 = g(v).

V. RANDOM PROCESS AND ITS n-DIMENSIONAL PROBABILITY DENSITY

Definition: If for each instant of time t ξ = ξ(t) represents a random variable then ξ(t) is called
as random (stochastic) process. Random variable is completely defined by setting its values and
probability to take these values.

The one-dimensional (one-moment) probability density W (x, t) of a random process is a single-
parameter set of random values:

W (x, t)dx = P{x ≤ ξ(t) ≤ x+ dx},
+∞∫

−∞

W (x, t)dx = 1.

If one knows one-dimensional probability density, he can easily find averages:

< f [ξ(t)] >=

+∞∫
−∞

f(x)W (x, t)dx.
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Now let us consider the random process ξ(t) at two different instants of time: ξ(t1) and ξ(t2). Then
their ensemble is described by two-dimensional probability density W (x1, t1;x2, t2). The probability

W (x1, t1;x2, t2)dx1dx2 = P

{
x1 ≤ ξ ≤ x1 + dx1)
x2 ≤ ξ ≤ x2 + dx2)

}
(15)

is the probability for realization of a random process to be at the time t1 within the interval (x1, x1+
dx1) and at t2 within (x2, x2 + dx2).

Further by inductance may be introduced n-dimensional probability density W (x1, t1; . . . ; xn, tn).
For n → ∞ we get complete description of a random process. It is necessary to mention that from
the point of view of rigorous mathematics we should know the functional of the probability density
W [x(t)].

Definition
Random processes having equal n-dimensional probability densities are called as equivalent.
Main properties of the probability density
1. Nonnegativity: W (x1, t1; . . . ;xn, tn) ≥ 0.

2. Normalization:
+∞∫
−∞

. . .
+∞∫
−∞

W (x1, t1; . . . ;xn, tn)dx1 . . . dxn = 1.

3. Simmetricity: W (x1, t1; x2, t2) ≡ W (x2, t2;x1, t1).
4. Consistency:

+∞∫
−∞

. . .

+∞∫
−∞

W (x1, t1; . . . ;xn, tn)dxm+1 . . . dxn = W (x1, t1; . . . ; xm, tm),

supernumerary parameters are automatically deleted.

VI. CONDITIONAL PROBABILITY DENSITIES OF RANDOM PROCESS

You probably remember one of the basic theorems of the probability theory about conditional
probability. The same property takes place for n-dimensional (n-moment) probability densities.
Let we have two-dimensional probability density W (x1, t1; x2, t2). This probability density may
be expressed as the product of one-dimensional probability density W (x1, t1) and conditional one
W (x2, t2|x1, t1):

W (x1, t1; x2, t2) = W (x1, t1) ·W (x2, t2|x1, t1).

Thus, we introduce the conditional probability density as:

W (x2, t2|x1, t1) =
W (x1, t1;x2, t2)

W (x1, t1)
. (16)

Here x2 is real argument and t2,t1, x1 are parameters of the conditional probability density. If we
multiply W (x2, t2|x1, t1) by dx2, it is possible to say that this is the probability of a random process
to be within the interval (x2, x2 + dx2) at the time t2 if at the time t1 it was at the point x1:

W (x2, t2|x1, t1)dx2 = P {x2 ≤ ξ(t2) ≤ x2 + dx2|ξ(t1) = x1} . (17)

Main properties of the conditional probability density
1. Nonnegativity: W (x2, t2|x1, t1) ≥ 0.

2. Normalization:
+∞∫
−∞

W (x2, t2|x1, t1)dx2 = 1.
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3. Remark. One can introduce

W (x1, t1|x2, t2) =
W (x1, t1; x2, t2)

W (x2, t2)
, t2 > t1, (18)

but this property is fulfilled for time-reversible processes only.
Using conditional probability density one can find conditional averages.
Some remarks about dependence of W (x2, t2|x1, t1) on time difference t2 − t1.
Values of a random process are independent if W (x1, t1;x2, t2) = W (x1, t1) · W (x2, t2), or,

equivalently, if W (x2, t2|x1, t1) = W (x2, t2).
For real processes having finite memory W (x2, t2|x1, t1) → W (x2, t2) for t2 − t1 → ∞.
For real processes having continuous trajectories W (x2, t2|x1, t1) → δ(x2 − x1) for t2 − t1 → 0.
Analogically to the conditional probability density W (x2, t2|x1, t1) n-dimensional conditional

probability densities may be introduced:

W (xn, tn|x1, t1; . . . ;xn−1, tn−1) =
W (x1, t1; . . . ;xn, tn)

W (x1, t1; . . . ;xn−1, tn−1)
. (19)

Thus, we can write n-dimensional probability density W (x1, t1; . . . ; xn, tn) as product of one-
dimensional probability density and conditional probability densities:

W (x1, t1; . . . ;xn, tn) =

= W (x1, t1) ·W (x2, t2|x1, t1) ·W (x3, t3|x1, t1;x2, t2) · . . . ·W (xn, tn|x1, t1; . . . ; xn−1, tn−1). (20)
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[5] C.W. Gardiner, Textbook of Stochastic methods (Springer-Verlag, 1985).
[6] L.A. Pontryagin, A.A. Andronov and A.A. Vitt, Zh. Eksp. Teor. Fiz. 3, 165 (1933) [translated by J.B. Barbour and

reproduced in "Noise in Nonlinear Dynamics 1989, edited by F. Moss and P.V.E. McClintock (Cambridge University Press,
Cambridge) Vol. 1, p.329].
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I� FEW MODELS OF RANDOM PROCESSES

Random processes may be distinguished by conditional probability densities�
Absolutely random process�
De�nition� Absolutely random process is a process whose values in di�erent moments of time are

absolutely statistically independent�

W �x�� t�� � � � �xn� tn� �
nY
i��

W �xi� ti�� ���

i�e� for complete description of absolutely random process it is enough to know only one	dimensional
probability density� White noise is an example of absolutely random process�
If the time of inertion of the system �sys is much larger than the characteristic time of the process

�p ��sys � �p� then the process may be treated as absolutely random process� One more name of
absolutely random process is 
process without memory
�

W �xn� tnjx�� t�� � � � �xn��� tn��� �W �xn� tn�� ���

Further by inductance let us introduce more complicated processes�
Markov �Markovian� process�
De�nition� The process ��t� is Markov process if for any ordered n moments of time t� � � � � �

t � � � � � tn n	dimensional conditional probability density depends only on the last �xed value�

W �xn� tnjx�� t�� � � � �xn��� tn��� �W �xn� tnjxn��� tn���� �
�

Markov processes are processes without aftere�ect�

W �x�� t�� � � � �xn� tn� � W �x�� t��
nY
i��

W �xi� tijxi��� ti���� ���

In detail Markov processes will be considered in further lectures�
General random processes�
Next one may consider processes where the conditional probability density depends only on the

values of the random variable at the two latest times� In this case the complete information about
the process is contained in W �x�� t��x�� t��x�� t��� Hence we may continue� i�e� we may have process
where the complete information is contained inW �x�� t��x�� t��x�� t��x�� t�� and so on� Due to Wang
and Uhlenbeck ���� however� this further classi�cation is not suitable to describe non	Markovian
processes� i�e� processes where the complete information is not contained in W�� For non	Markovian
processes one may take into account besides ��t� � ���t� more random variables ���t�� ���� �n�t�� By
a proper choice of these additional variables one may then have a Markov process for n random
variables� Another possibility is the following� As you will see in the next lecture� the equation of
motion of the probability density for continuous Markov process is the Fokker	Planck	Kolmogorov

�



equation� For non	Markovian processes one may then use generalized Fokker	Planck equations ���
which contain a memory function�
Quasi�deterministic random processes�
What is the deterministic process from the point of view of probabilistic description�
Let we have deterministic function ��t� � s�t�� For example� s�t� � A� cos���t � ���� In this

case the one	dimensional probability density looks like� W �x�� t�� � ��x�� s�t���� Two	dimensional�

W �x�� t��x�� t�� � ��x� � s�t�����x� � s�t���� And n	dimensional� W �x�� t�� � � � �x�� t�� �
nQ
i��

��xi �
s�ti��� Certainly� nobody describes deterministic processes by this way� but this approach gives an
opportunity to describe quasi	deterministic random processes�
De�nition� Quasi	deterministic random process is a process whose realization is described by the

function of known form� containing one or some random parameters� ��t� � s�t� 	�� 	 is random
value described by the probability density W��	��
How to �nd the n	dimensional probability densityW �x�� t�� � � � �xn� tn�� The conditional probabil	

ity density for known 	 is�

W �x�� t�� � � � �xn� tnj	� �
nY
i��

��xi � s�ti� 	���

First let us write n� �	dimensional probability density�

W �x�� t�� � � � �xn� tn�	� � W��	� �W �x�� t�� � � � �xn� tnj	��
The required n	dimensional probability density of quasideterministic process may be obtained by

integration of n � �	dimensional probability density�

W �x�� t�� � � � �xn� �

��Z
��

W �x�� t�� � � � �xn� tn�	�d	 �

��Z
��

W��	�
nY
i��

��xi � s�ti� 	���

Example� Consider process ��t� � A� cos���t� ��� where � is random phase�

W���� �

�
�
�� � � � ��� �
��
�� � � ��� �
��

���

Its one	dimensional probability density is

W �x� t� �

��Z
��

W������x�A� cos���t� ���d��

II� CHARACTERISTIC FUNCTION OF A RANDOM PROCESS

The characteristic function is Fourier transformation of the probability density� One	dimensional
characteristic function looks like�

��u� t� �
��Z
��

W �x� t�ejuxdx� ���

where j �
p���

In n	dimensional case the characteristic function has the following form�

�



��u�� t�� � � � �un� tn� �
��Z
��

� � �

��Z
��

W �x�� t�� � � � �xn� tn�e
j�u�x������unxn	dx� � � � dxn �

�
e
j

nP
i��

uixi
�
� ���

If the characteristic function is known� one can get the n	dimensional probability density�

W �x�� t�� � � � �xn� tn� � �

��
�n

��Z
��

� � �

��Z
��

��u�� t�� � � � �un� tn�e
�j�u�x������unxn	du� � � � dun� ���

Main properties of characteristic function�

�� ���� t�� � � � � �� tn� � ��

�� j��u�� t�� � � � �un� tn�j � j���� t�� � � � � �� tn�j � ��


� ���u�� t�� � � � ��un� tn� � ���u�� t�� � � � �un� tn��

�� ��u�� t�� � � � �um� tm� � ��u�� t�� � � � �um� tm� �� tm��� � � � � �� tn�� n � m�

��
�R
��

��u�� t�� � � � �un� tn�e�j�u�x������unxn	du� � � � dun � �� for any x 	 the characteristic function is

positively de�ned�

For absolutely random processes� ��u�� t�� � � � �un� tn� �
nQ
i��

��ui� ti��

III� MOMENT FUNCTIONS OF A RANDOM PROCESS

The simplest moment function is the mean value�


��t� �� ��t� ��
��Z
��

xW �x� t�dx�

The second moment function is the correlation function�


��t�� t�� � K��t�� t�� �� ��t����t�� ��
��Z
��

x�x�W �x�� t��x�� t��dx�dx�� ���

And so on� in general� the n	th moment function is�


n�t�� t�� � � � � tn� �� ��t����t�� � � � ��tn� � �

The n	dimensional probability density should be known to �nd the n	th moment function�

Connection between the characteristic function and moment functions�

Let us expand the characteristic function ��u�� t�� � � � �un� tn� into Maclauren series�

��u�� t�� � � � �un� tn� � ���� t�� � � � � �� tn� �
nX

k��

���u�� t�� � � � �un� tn�

�uk

�����
u������un��

uk �

�
�

��

nX
k���

nX
k���

����u�� t�� � � � �un� tn�

�uk��uk�

�����
u������un��

uk�uk� � � � �� ����

�
�

s�

nX
k������ks��

�s��u�� t�� � � � �un� tn�

�uk� � � � �uks

�����
u������un��

uk�uk� � � � uks � � � �

�



The derivative of the characteristic function is directly connected to the corresponding moment
function�

���u�� t�� � � � �un� tn�

�uk

�����
u������un��

�

Z
� � �

Z
W �x�� t�� � � � �xn� tn� � jxkej
�u�x������unxn�dx� � � � dxn

����
u� �����un��

� j � ��tk� � � ����

�s��u�� t�� � � � �un� tn�

�uk� � � � �uks

�����
u������un��

� js � ��tk�� � � � ��tks� �� js
s�tk� � � � � � tks�� ����

Thus� the characteristic function may be represented as an in�nite moment expansion�

��u�� t�� � � � �un� tn� � � �
�X
s��

js

s�

nX
k������ks��


s�tk�� � � � � tks�uk� � � � uks� ��
�

In this formula we used the �rst property of the characteristic function� For obtaining the charac	
teristic function it is necessary to know n	dimensional moment functions of any order�

Central moment functions�

For simplicity� and because central moments are not widely used� we present here only one	
dimensional central moment functions�
Central moments are de�ned as�

�n�t� �� ���t�� � ��t� ��n ��

� ��t� �� 
��t� � m�t� is the mean value�
If 
��t� � �� then �n�t� � 
n�t��

���t� �� ���t�� � ��t� �� �� ��

���t� �� ���t�� � ��t� ��� ��� ��t�� � ���t� � ��t� � � � ��t� ����
�� ��t�� � � � ��t� ��� 
��t�� 
��t�

� � D�t��

i�e� the second central moment is variance�
Main characteristics of a random process are its mean m�t� and variance D�t�� For normally dis	

tributed random values the mean and the variance completely de�ne its one	dimensional probability
density� If W �x� t� is Gaussian �normal� distribution� then�

W �x� t� �
�q

�
D�t�
e
�

�x�m�t���

�D�t� �

Thus� from previous two sections one can conclude that if all moments are known� then they can
be summarized into the characteristic function and inverse Fourier transformed into the probability
density� This is generally true� but not applicable in practice� Why� The answer is the following�
One example� Consider deterministic process� Its probability density is W �x� t� � ��x � m�t���

One can easily get all moments� 
��t� � m�t�� 
��t� � m��t�� ���� 
k�t� � mk�t�� ���t� � ���t� �
� � � � �k�t� � �� Even in this simplest case all moments should be taken into account to obtain the
required characteristic function �probability density�� We can not stop summation of the in�nite set

�



in formula ��
� and I do not know examples of process which are described by �nite set of moments�
But in real tasks the result of summation of the set ��
� is unknown�
Home exercise� In di�erence from real tasks the in�nite set of moments in the above	mentioned

example can be summarized� Please� obtain probability density of deterministic process using one
more property of Dirac delta function that was not presented in the �rst lecture�
The representation of characteristic function via cumulants �semiinvariants� �
� �see also ���� allows

to avoid problems of summation of an in�nite set� because there exists at least one class of processes
that may be completely described by only two cumulants �Gaussian processes� and in many practical
cases higher cumulants may be neglected and an in�nite set may be approximately substituted by
�nite one�

IV� CUMULANT FUNCTIONS OF A RANDOM PROCESS

Cumulant functions are introduced as follows�

ln��u�� t�� � � � �un� tn� � ln���� t�� � � � � �� tn� �
�X
s��

js

s�

nX
k������ks��

�s�tk�� � � � � tks�uk� � � � uks� ����

where �s�tk� � � � � � tks� are cumulant functions of the s	th order �let us mention that the �rst term
ln���� t�� � � � � �� tn� in ���� is obviously zero��

�s ln��u�� t�� � � � �un� tn�

�uk� � � � �uks

�����
u������un��

� js�s�tk�� � � � � tks��

The characteristic function may be expressed as the set of cumulants in the following form�

��u�� t�� � � � �un� tn� � exp

��
�
�X
s��

js

s�

nX
k������ks��

�s�tk�� � � � � tks�uk� � � � uks

�	

 � ����

This representation is more useful than the analogous representation via moments�

Connection between cumulant and moment functions

���tk� �
�

j

� ln��u�� t�� � � � �un� tn�

�uk

�����
u� �����un��

�
�

j

�
�

��� � ��

���u�� t�� � � � �un� tn�

�uk

�
u������un��

� 
��tk��

i�e� the �rst cumulant function is equal to the �rst moment function ���tk� � 
��tk�� because
��� � �� � � when its arguments equal zero u� � � � � � un � ��

���tk�� tk�� �
�

j�
�� ln��u�� t�� � � � �un� tn�

�uk�uk�

�����
u� �����un��

�

�
�

j�

�
� �

���� � ��

���� � ��

�uk�

���� � ��

�uk�
�

�

��� � ��

����� � ��

�uk��uk�

�
u������un��

� 
��tk�� tk��� 
��tk��
��tk���

The second cumulant function

���tk� � tk�� � 
��tk� � tk��� 
��tk��
��tk�� � B��tk�� tk�� ����

�



is known as covariation function� The covariation function in coinciding moments of time is variance�
B��t� t� �� ���t� � � � ��t� ��� D�t� � ��

��t�� where ���t� is the mean square deviation�
If B��t�� t�� � � for any moments of time� then such process is called as uncorrelated� In this case

the correlation function ��� is equal to� K��t�� t�� �� ��t�� �� ��t�� ��
There is often used normalized covariation function�

R��t�� t�� � B��t�� t��

���t�����t��
� B��t�� t��q

B��t�� t��B��t�� t��
�

Below �for simplicity in one	dimensional case� you may see relations between cumulants and mo	
ments of up to the sixth order�
Representation of the �rst six cumulants via moments looks like�

�� � 
� � m�

�� � 
� � 
�
� � D�

�� � 
� � 

�
� � �
�
��

�� � 
� � 

�
� � �
�
� � ��
�

�
� � �
�
��

�� � 
� � �
�
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�
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�
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�
�


�
� � ��
�

�
� � ��
�
��

�
 � 

��
�
����
�
��
�

�
�
����
�

�����
�
�
�����
�
�
��
�


�
�����
�

�

�
��
��


�
�
�����



��

On the other hand� the representation of the �rst six moments via cumulants looks like�


� � ���


� � �� � ��
��


� � �� � 
���� � ��
��


� � �� � 
��
� � ����� � ���

��� � ��
��


� � �� � ����� � ������ � ����
��� � ����

��� � �����
�
� � ��

��



 � �
������������������
��������

���������������
��������

������
��

�
������

�����

��

From the above presented material we can conclude that �rst two cumulants �one	dimensional
cumulant functions� have clear sense� the �rst one is the mean and the second one is the variance�
For Gaussian distributions higher cumulants equal zero�
Not only two �rst cumulants have clear sense� Clear interpretation may be also given for the

third and the fourth cumulants� The third cumulant �� is called as 
asymmetry
 of distribution�
Asymmetry is distinct from zero only for probability densities asymmetric relatively mean ��� The
fourth cumulant �� is called as excess� Excess of distribution is often describes deviation of the
distribution from Gaussian one to sharper ��� � �� or more �at ��� � �� shape� however this is not
always true �see �
���
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Quasimoments and Edgeworth series�

It is important to mention that cumulants ��� ��� ������ describe the extent of deviation of the
probability distribution from the Gaussian one� This gives an opportunity to quantitatively estimate
this deviation and write arbitrary distribution as the set of Gaussian one and its derivatives�
Let us consider an arbitrary distribution W �x�� having in general all cumulants� Its characteristic

function ���� may be presented in the following form�

��u� � exp
�
jmu� D

�
u�

�

� �
�X
k��

�ju�k

k�
�k

�
� ����

where �
� �

�X
k��

�ju�k

k�
�k

�
� exp

�
�X
k��

�ju�k

k�
�k

�
�

Comparing this equality with the representation of characteristic function via moments ��
� and
via cumulants ���� �supposing one	dimensional case� it is easy to see that coe�cients �k represents
nothing else as moments 
k calculated with the condition �� � �� � �� Thus we get�

�� � ��� �� � ��� �� � ��� �
 � �
 � ����
�� � � �

and so on�
These coe�cients are called as 
quasimoments
 of distribution� They are di�erent from zero for

non	Gaussian distributions only�
Performing Fourier transformation of formula ���� we get�

W �x� � WG�x� �
�X
k��

����k �k
k�
W

�k	
G �x��

where W �k	
G �x� is the derivative of the Gaussian distribution of the k	th order� The obtained ex	

pansion is called as Edgeworth series� It gives an expansion of arbitrary probability density by
derivatives of Gaussian distribution� In the case when higher cumulants are relatively small� only
�rst four terms of expansion may be considered�

W �x� � WG�x�� ��


�
W

��	
G �x� �

��

��
W

��	
G �x�� ��

��
W

��	
G �x� �

�
 � ��
�

��
W

�
	
G �x��

From this formula especial worth of cumulants ��� ��� ��� �
 is seen for estimation of deviation
of the probability density from Gaussian one�

	 It is necessary to mention that the Edgeworth series gives correct results for distributions close
to Gaussian one and in some cases non	suitable use of the Edgeworth series may give probability
densities signi�cantly far from real one and even negative probability density�

��� M�C�Wang and G�E�Uhlenbeck� Rev� Mod� Phys�� v� �
� p���� �������
��� H�Risken� The Fokker�Planck equation �Springer Verlag� Berlin� ������
��� A�N�Malakhov� Cumulant analysis of random Non�Gaussian processes and its transformations �Sovetskoe Radio� Moscow�

��
�� in Russian��
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Stochastic processes and applications

Lecture �

Andrey L� Pankratov
Institute for Physics of Microstructures of RAS� GSP ����

Nizhny Novgorod� ������� RUSSIA� E�mail	 alp
ipm��sci�nnov�ru

I� CONTINUOUS MARKOV PROCESSES

If we will consider arbitrary random process� then for this process the conditional probability
density W �xn� tnjx�� t�� � � � �xn��� tn��� depends on x�� x�� ��� xn��� This lead to de�nite �temporal
connexity� of the process� to existence of strong aftere�ect� and� �nally� to more precise re	ection
of peculiarities of real smooth processes� However� mathematical analysis of such processes becomes
signi�cantly sophisticated� up to complete impossibility of their deep and detailed analysis� Because
of this reason� some �tradeo�� models of random processes are of interest� which are simple in
analysis and in the same time are correctly and satisfactory describe real processes� Namely such
processes� having wide dissemination and recognition� are Markov processes�
Consider continuous Markov processes� Continuous process is characterized by the fact that during

any small period of time 
t some small �of the order of
p

t� variation of state takes place�

Let us de�ne continuous Markov process x�t�� Let us take in consecutive moments of time t� �
t� � � � � � tn values of random process x� � x�t��� x� � x�t��� ���� xn � x�tn��
De�nition� The process x�t� is Markov process if for any ordered n moments of time t� � � � � �

t � � � � � tn n�dimensional conditional probability density depends only on the last �xed value


W �xn� tnjx�� t�� � � � �xn��� tn��� �W �xn� tnjxn��� tn���� ���

Markov processes are processes without aftere�ect� Thus� formula ���� of the �rst lecture may be
written as


W �x�� t�� � � � �xn� tn� � W �x�� t��
nY
i��

W �xi� tijxi��� ti���� ���

Formula ��� contains only one�dimensional probability density W �x�� t�� and the conditional proba�
bility density�
The term �transition probability� is closely connected with Markov processes� This term was

introduced in physics without any connection to mathematical theory of random processes� The
�transition probability� is related to such physical system� which state at the current moment com�
pletely de�nes its further evolution� �Transition probability� treates the probability of transition of
the system from the state x� existing at the moment of time t� to the state x� at the next moment of
time t�� However� not for each system� subjected by random transitions� it was possible to introduce
the term �transition probability�� Here the independence of the probability of the next transition
from history of states of the system was important� Thus� the term �transition probability� exists
only for systems� the present state of which comprehensively determines the probabilities of next
transitions�
Because for Markov processes formula ��� is ful�lled� then it is clear� that the probability density

in the right hand side is nothing else as transition probability density from the state xn�� to the
state xn during the time period between tn�� and tn�

�



Characteristic property of Markov process is that the initial one�dimensional probability density
and the transition probability density completely determine Markov random process�
The transition probability density satisfy the following conditions


�� The transition probability density is non�negative and normalized quantity


W �x� tjx�� t�� � ��

��Z
��

W �x� tjx�� t��dx � ��

�� The transition probability density becomes Dirac delta function for coinciding moments of time
�physically this means small variation of the state during small period of time�


lim
t�t�

W �x� tjx�� t�� � ��x� x���

�� The transition probability density ful�ll Smoluchowski equation


Let we have at the moment t�
 x�t�� � x�� We are looking for probability to �nd random
process at t� in the interval �x�� x�� dx�� and at t� in the interval �x�� x�� dx��� Let us remind
that P fx� � x�t�� � x� � dx�jx�t�� � x�g � W �x�� t�jx�� t��dx�� Following the condition that
the process x�t� is Markov process we have that W �x�� t�jx�� t��dx� and W �x�� t�jx�� t��dx� are
statistically independent� For transition probability density the Smoluchowski equation takes
place �in western literature Chapman�Kolmogorov equation�


W �x�� t�jx�� t�� �
��Z
��

W �x�� t�jx�� t��W �x�� t�jx�� t��dx�� ���

One can easily see the correctness of this equation� On the basis of ��� we can write


��Z
��

W��x�� t��x�� t��x�� t��dx� �W �x�� t��

��Z
��

W �x�� t�jx�� t��W �x�� t�jx�� t��dx��

Because of condition of consistency of the probability density �see lecture �� the left integral
is equal to two�dimensional probability density� which may be expressed from the transition
probability density as


W��x�� t��x�� t�� � W �x�� t��W �x�� t�jx�� t���
Equating right parts of these equalities we get Smoluchowski equation ����

If initial probability densityW �x�� t�� is known and the transition probability densityW �x� tjx�� t��
has been obtained then one can easily get one�dimensional probability density in arbitrary instant
of time


W �x� t� �

�Z
��

W �x�� t��W �x� tjx�� t��dx�� ���

Which equation can describe Markov process� We now know all properties of Markov process and
can guess that Markov process should be described by a �rst order di�erential equation� because
only a �rst order di�erential equation is uniquely determined by its initial value� Markov process is
a random process� thus equation� describing this process should contain a noise source� But which
characteristics should the noise source have� This can be only absolutely random ���correlated�
process� because only for such process at former moments of time the conditional probability density
at later moments of time will not be changed�

�



II� BROWNIAN MOTION IN A FIELD OF FORCE AND LANGEVIN EQUATION

In the most general case Brownian motion in a �eld of force is described by simple dynamic
equation with noise source


m

h

d�x�t�

dt�
�
dx�t�

dt
� �d��x�

hdx
� ��t�� ���

where ��t� may be treated as white Gaussian noise �Langevin force�� � ��t� �� �� � ��t���t�� � ��
D�x� t���� �� ��x� is a potential pro�le� m is a mass of Brownian particle and h is viscosity� But
this is second order equation which describes not Markov process itself� but a set of two Markov
processes
 x�t� and dx�t�	dt� Restricting present course by consideration of only Markov processes
we will call as Langevin equation the limiting case of the above�mentioned equation �for m	h� ���
that in physical interpretation corresponds to overdamped Brownian motion


dx�t�

dt
� �d��x�

hdx
� ��t�� ���

Often� instead of potential� one can speak about drift coe�cient a�x� � �d��x�
hdx

� If the di�usion
coe�cient D�x� t� does not depend on x� then eq� ��� is called a Langevin equation with an additive
noise source� For D�x� t� depending on x one speaks of a Langevin equation with multiplicative noise
source� This distinction between additive and multiplicative noise may not be considered very signif�
icant because for the one�variable case ���� for time�independent drift and di�usion coe�cients and
for D�x� t� �� �� the multiplicative noise always becomes an additive noise by a simple transformation
of variables ����
Equation ��� is stochastic di�erential equation� Some required characteristics of stochastic process

may be obtained even from this equation either by cumulant analysis technique or by other methods�
presented in detail in ����
But the most powerful methods of obtaining the required characteristics of stochastic processes

are associated with the use of the Fokker�Planck�Kolmogorov equation for the transition probability
density�

III� THE FOKKER�PLANCK�KOLMOGOROV EQUATION

The transition probability density of continuous Markov process satisfy to the following partial
di�erential equations



W �x� tjx�� t��

t

�

�




x
��a�x� t�W �x� tjx�� t��� � �

�


�


x�
�D�x� t�W �x� tjx�� t���

�
���

�
W �x� tjx�� t��

t�

�

�
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x�
W �x� tjx�� t�� � �

�
D�x�� t��


�


x��
W �x� tjx�� t��

�
���

Equation ��� is called as the Fokker�Planck�Kolmogorov equation �FPKE� or forward Kolmogorov
equation� because it contains time derivative of �nal moment of time t � t�� In western literature
this equation is also known as Smoluchowski equation� The second equation ��� is called as backward
Kolmogorov equation� because it contains time derivative of initial moment of time t� � t� These
names are associated with the fact that the �rst equation used Fokker ������ and Planck ������

�



for description of Brownian motion� but Kolmogorov was �rst who gave rigorous mathematical
argumentation for eq� ��� and he was �rst who obtained eq� ����
Let us obtain equations ��� and ���� supposing that all operations that we will use �existing of

limits� derivation� integration and so on� are valid�
For obtaining forward Kolmogorov equation ��� we should in the Smoluchowski equation ��� take

the medium instant of time t� close to the �nal instant t and for obtaining of backward Kolmogorov
equation ��� � close to initial instant t�� Because all mathematical calculations are identical in both
cases� we consider only how to get forward Kolmogorov equation�
Let us write Smoluchowski equation ��� in the following form


W �x� t�
tjx�� t�� �
��Z
��

W �x� t�
tjx�� t�W �x�� tjx�� t��dx�� t�
t � t � t�� ���

where the time interval 
t is supposed to be small�
Let us introduce into consideration the conditional characteristic function ���� t � 
tjx�� t� of

random increment �x � x�� during small period 
t with the condition that x� is �xed� By the
de�nition of the characteristic function we have


���� t�
tjx�� t� �� expfj��x� x��gjx�� t ��
��Z
��

expfj��x� x��gW �x� t�
tjx�� t�dx�

According to inverse Fourier transformation we can write


W �x� t�
tjx�� t� � �

��

��Z
��

expf�j��x� x��g���� t�
tjx�� t�d�� ����

Decomposing the conditional characteristic function into Taylor expansion we get


���� t �
tjx�� t� �
�X
n��

mn�x�� t�

n�
�j��n� ����

where mn�x�� t� �� fx�t�
t��x��t�gnjx��t� � are conditional moments of increment x�x� during
the time 
t

mn�x
�� t� �

��Z
��

�x� x��nW �x� t�
tjx�� t�dx�

If we substitute formula ���� in formula ���� and make some transformations� then we get


W �x� t�
tjx�� t� �
�X
n��

����nmn�x�� t�

n�


n


xn
��x� � x�� ����

Substituting this expression into Smoluchowski equation ��� and performing integration with delta
function we get


W �x� t�
tjx�� t�� �
�X
n��

����n
n�


n


xn
�mn�x� t�W �x� tjx�� t���� ����

or

�



W �x� t�
tjx�� t���W �x� tjx�� t�� �
�X
n��

����n
n�


n


xn
�mn�x� t�W �x� tjx�� t���� ����

Dividing both parts of this di�erential equation by 
t and transiting to the limit for 
t � �� we
get






t
W �x� tjx�� t�� �

�X
n��

����n
n�


n


xn
�Kn�x� t�W �x� tjx�� t���� ����

where

Kn�x� t� � lim
	t��

�


t

Z
�x�t�
t�� x�t��nW �x� t�
tjx� t��dx� ����

It is necessary to point that equation ����� which was obtained only using the formula of total
probability� is valid for arbitrary random processes� for which coe�cients Kn�x� t� exist�
Consider now one particular� but important case of the obtained equation ����� when �rst two

coe�cients are not zero� but further coe�cients Kn�x� t� for n � � are equal to zero


Kn�x� t� �� �� n � �� �� Kn�x� t� � �� n � �� ����

Markov processes� satisfying these conditions are called as di�usive processes�
As it follows from ����� the condition ���� characterizes the speed of decrease of the probability

with decrease of 
t� There are possible fast enough variations of the process x�t� but in opposite
directions� That is why the average increment of the process during small interval 
t is of the order
of
p

t� Thus� the ful�llment of the condition ���� is enough for continuous random process x�t� to

be Markov di�usive process�
Thus� for di�usive Markov processes equation ���� is simplifying and transit to the Fokker�Planck�

Kolmogorov equation� Consequently� drift and di�usion coe�cients are
 a�x� t� � K��x� t��D�x� t� �
K��x� t��
Both partial di�erential equations ��� and ��� are linear and of the parabolic type� The solution of

these equations should be nonnegative and normalized to unity� Besides� this solution should satisfy
to the initial condition


W �x� tjx�� t�� � ��x� x��� ����

Let us focus at the time on equation ��� as much widely used than ��� and discuss boundary
conditions and methods of solution of this equation�
The solution of equation ��� for in�nite interval and delta�shaped initial distribution is called

as fundamental solution of Cauchy problem� If initial value of Markov process is not �xed� but
distributed with the probability density W��x�� then as initial condition should be indicated this
probability density


W �x� t�� �W��x�� ����

In this case the one�dimnesional probability density W �x� t� may be obtained by two di�erent ways�
�� The �rst way is obtaining the transition probability density by the solution of equation ���

with delta�shaped initial distribution and after that averaging it over initial distribution W��x�� see
formula ����
�� The second way is obtaining the solution of equation ��� for one�dimensional probability density

with the initial distribution ����� Indeed� multiplying ��� by W �x�� t�� and integrating by x� taking
into account ��� we get the same Fokker�Planck�Kolmogorov equation ����

�



Thus� one�dimensional probability density of Markov process ful�ll the Fokker�Planck�Kolmogorov
equation and for delta�shaped initial distribution coincide with the transition probability density�
Later we sometimes instead of transition probability density will speak about one�dimensional prob�
ability density with initial delta�shaped distribution�
For solution of real tasks� depending on concrete set up of the task� may be used either forward

or backward Kolmogorov equation� If the one�dimensional probability density with known initial
distribution deserves interest� then it is naturally to use the forward Kolmogorov equation� Con�
trariwise� if it is necessary to calculate distribution of the Mean First Passage Time as function of
initial state x� then one should use the backward Kolmogorov equation�

Boundary conditions�

For obtaining the solution of the Fokker�Planck�Kolmogorov equation� besides initial condition
one should know boundary conditions� Boundary conditions may be quite diverse and determined
by essence of the task� Enough complete representation of boundary conditions the reader may �nd
in ����
Let us discuss four main types of boundary conditions
 re	ecting� absorbing� periodic� and the

so called natural boundary conditions as much wider used than others� especially for computer
simulations�
First of all we should mention that the Fokker�Planck�Kolmogorov equation may be represented

as continuity equation



W �x� t�


t
�

G�x� t�


x
� �� ����

Here G�x� t� is the probability current


G�x� t� � a�x� t�W �x� t�� �

�





x
�D�x� t�W �x� t�� � ����

Re�ecting boundary� Re	ecting boundary may be represented as in�nitely high potential wall�
Use of the re	ecting boundary assume that there is no probability current behind the boundary�
Mathematically re	ecting boundary condition is written as


G�d� t� � �� ����

where d is the boundary point� Any trajectory of random process is re	ected when it contacts the
boundary�
Let us consider example of Markov process evolution under the in	uence of the force a�x� t� � �c

�linear potential�� If we will locate the re	ecting boundary at the point x � �� the time evolution
of the transition probability density will be as presented in Fig� �� For this particular example one
can see the e�ect� called as transition bi�modality� In spite that we have the potential with only one
minimum at the point x � �� which will lead to uni�modal steady�state probability distribution and
initial distribution was also uni�modal �delta�shaped�� we can see bi�modal distribution of transition
probability density for some moments of time� This is due to the backward e�ect of the re	ecting
boundary on the probability density�
Absorbing boundary� Absorbing boundary may be represented as in�nitely deep potential well just

behind the boundary� Mathematically absorbing boundary condition is written as


W �d� t� � �� ����

�



where d is the boundary point� Any trajectory of random process is captured by the absorbing
boundary when it crosses the boundary and is not considered in the preboundary interval� If you
have� say� one re	ecting and one absorbing boundaries then eventually the whole probability will be
captured by the absorbing boundary and if you consider the probability density only in the interval
between two boundaries then you can guess that the normalization condition is not ful�lled �see
Fig� ��� If� however� you will think that the absorbing boundary is nothing else as an in�nitely deep
potential well� and will take it into account� then total probability density �in pre�boundary region
and behind it� will be normalized�

FIG� �� Probability distribution in linear potential with re�ecting boundary� Time evolution from � to ��

FIG� �� Probability distribution in linear potential with absorbing boundary�

�



Periodic boundary condition�

If you consider Markov process in periodic potential� then the condition of periodicity of the
probability density may be treated as boundary condition


W �x� t� � W �x� ��� t�� ����

The use of this boundary condition is especially comfortable for computer simulations�
Natural boundary conditions� If you consider Markov process in in�nite interval� then boundary

conditions at �� are called as natural� There are two possible situations� If the considered potential
at �� or �� tends to �� �in�nitely deep potential well� then the absorbing boundary should be
supposed at �� or ��� respectively� If� however� the considered potential at �� or �� tends to
�� then it is naturally to suppose the re	ecting boundary at �� or ��� respectively�
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Stochastic processes and applications
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I� METHODS OF SOLUTION OF THE FOKKER�PLANCK�KOLMOGOROV EQUATION

In the present lecture we consider methods of solution of nonstationary and stationary Fokker�
Planck�Kolmogorov equation ��� with constant in time drift and di�usion coe�cients� i�e� methods of
obtaining of temporal dynamics of the probability density W �x� t� and its steady�state distribution�
We will not consider singular di�usion Markov processes� for which the di�usion coe�cient vanishes
near a boundary of the considered interval�

�� Stationary solution of the Fokker�Planck�Kolmogorov equation�

For one�dimensional Markov processes one can easily 	nd in many cases the steady�state prob�
ability density� If we consider the case when the drift and the di�usion coe�cients are constant
in time� then for steady�state the transition probability density W �x� tjx�� t�� depends only on
the di�erence of considered moments of time� One dimensional steady�state probability density
Wst�x� 
 lim

t��
W �x� t�� if it is exist� is absolutely independent of time and initial distribution

W��x�� That is why for a steady�state �Wst�x���t 
 � and� thus� G�x� 
 G 
 const�

The steady�state probability distribution may be easily obtained as a solution of the Fokker�
Planck�Kolmogorov equation

�W �x� t�

�t



�
�

�x
��a�x�W �x� t�
 �

�

�

��

�x�
�D�x�W �x� t�


�
���

with the condition that �W �x� t���t 
 �� Indeed� then we get linear ordinary di�erential
equation of the second order��

�

�x
��a�x�Wst�x�
 �

�

�

��

�x�
�D�x�Wst�x�


�

 �� ���

For example� if we consider the case of zero probability current G 
 � at boundaries� integrating
this equation twice we get�

Wst�x� 

C

D�x�
exp

�
��

xZ
x�

a�x�

D�x�
dx

�
� � ���

where C is determined from normalization condition� For a constant di�usion coe�cientD�x� 

D 
 const we get even more simple formula�

Wst�x� 

C

D
exp

�
�
���x�

hD

�
� ���

�



where we have substituted the drift coe�cient by the derivative of potential a�x� 
 �d��x�
hdx

�
here h is damping �viscosity��

Thus� if we can determine from the equation� describing the behavior of the system� the drift
and di�usion coe�cients� then in some cases it is possible to immediately write the expression
for one�dimensional steady�state probability density� This demonstrates the e�ectiveness of the
use of the Fokker�Planck�Kolmogorov equation�

�� Method of eigenfunction and eigenvalue analysis�

The method of eigenfunction and eigenvalue analysis is the most widely used method is western
literature� This method is comfortable to use in cases when both drift and di�usion coe�cients
do not depend on time� In this case the Fokker�Planck�Kolmogorov equation takes the form
����

We will search for a solution in the form�

W �x� t� 
 X�x� � T �t�� ���

where X and T are functions of coordinate and time� respectively� Dividing both parts of
equation ��� by ��� we get�

�

T �t�

�T �t�

�t



�
�
�

�x
�a�x�X�x�
 �

�

�

��

�x�
�D�x�X�x�


�
X���x�� ���

The left part of ��� depends only on t� while the right one depends only on x� Therefore both
parts are equal to the same constant which we de	ne as ��� � � �� Thus� from equation ���
we get two ordinary di�erential equations�

�

T �t�

�T �t�

�t

 ��� ���

�
�

�x
��a�x�X�x�
 �

�

�

��

�x�
�D�x�X�x�


�

 ��X�x�� ���

Simple equation of the 	rst order ��� has the solution

T �t� 
 e��t� ���

and the solution of linear second order equation ��� may be found by known methods of solution
of ordinary di�erential equations with variable coe�cients� This solution X�x�A�B� �� depends
on two arbitrary constants A and B� Since equation ��� is linear� the general solution has the
form�

W �x� t� 

�X
n��

X�x�An� Bn� �n�e
��nt� ����

where constants An� Bn� and �n are de	ned by initial and boundary conditions�

It can be demonstrated �see ��
� that if di�erence of currents G�x� t� through boundaries is equal
to zero� then the solution ���� can be represented in the form�

�



W �x� t� 
 T�Wst�x� �
�X
n��

Xn�x�Tne
��n�t�t��� ����

where Xn�x� are eigenfunctions of equation ��� corresponding to eigenvalues �n� Tn are constant

coe�cients� Functions Xn�x� are orthonormalized with the weight
�

Wst�x�
�

Z
Xm�x�Xn�x�dx

Wst�x�

 �mn 


�
�� m 
 n�
�� m �
 n�

If the initial probability density is known� W �x� t�� 
 W��x�� then coe�cients Tn are de	ned
by the following expression�

Tn 

Z
W��x�Xn�x�

Wst�x�
dx�

If initial probability density is Dirac delta function� W��x� 
 ��x� x��� then the solution ����
has the form�

W �x� t� 
 W �x� tjx�� t�� 

�X
n��

Xn�x�Xn�x��

Wst�x��
e��n�t�t���

where X��x� 
 Wst�x� and �� 
 ��

�� Method of Laplace transformation�

The sense of application of Laplace transformation to the FPKE is eliminating of time variable t
that allows to reduce partial di�erential equation to ordinary di�erential equation� The Laplace
transformation method is usually used when drift and di�usion coe�cients of the FPKE are
constant in time�

Let us denote the Laplace transformation of the function W �x� t� as�

Y �x� s� 


�Z
�

W �x� t�e�stdt�

Applying rules of Laplace transformation �see� e�g�� ��
 or its translations� to equation ��� we
get�

sY �x� s��W��x� 


�
�

d

dx
�a�x�Y �x� s�
 �

�

�

d�

dx�
�D�x�Y �x� s�


�
� ����

Here W��x� is initial probability distribution�

Equation ���� is heterogeneous ordinary di�erential equation of the second order� The initial
condition is inserted into equation ����� Boundary conditions for function W �x� t� transform
into boundary conditions for the function Y �x� s� and should be taken into account when solving
equation �����

When the solution of eq� ���� is found� the probability density W �x� t� may be obtained using
inverse Laplace transformation�

�



Let us mention� that namely on the basis of Laplace transformation method recently were
elaborated new powerful approaches� that will be presented in further lectures� But solution
of equation ���� itself is very complicated task� Say� if you will consider process of Brownian
di�usion in piecewise parabolic potentials� then the solution of equation ���� will be expressed
via special functions � Weber �parabolic cylinder� functions ��
� For more complicated potentials
the special functions are unknown �but may be obtained� I did it for potentials of the fourth
order�� Thus� there is no hope at the present time that one can get exact probability density
using inverse Laplace transformation from the solution of eq� ���� �except few simplest cases
of purely parabolic or linear potentials��

�� Method of characteristic function�

Sometimes it is possible to get simpli	cation by the transition in equation ��� from probability
density W �x� t� to characteristic function�

��u� t� 


��Z
��

W �x� t�ejuxdx� ����

Usually this may be performed using the following procedure� After substitution of concrete
drift a�x� t� and di�usion D�x� t� coe�cients� both sides of equation ��� 	rst are multiplied by
ejux and integrated over x �or one can directly use rules of Fourier transformation if possible��
The initial condition may be found by substitution of initial probability density W��x� into
����� Namely this approach is called as method of characteristic function�

�� Method of exchange of independent variables�

There also may be used the method of exchange of independent variables for solution of the
FPKE� The aim of this method is to reduce the FPKE to the di�usion equation �see example
below�� describing dynamics of the so�called Wiener process� But there is exist the theorem by
Cherkasov� proving that necessary transformation of variables may be done only for restricted
class of drift and di�usion coe�cients� for example for such that� a�x� t� 
 b�t�x�f�t��D�x� t� 

F �t��

�� Explicit di�erence scheme�

At the present time� when we have strong computers� the FPKE may be easily solved nu�
merically� There are many di�erent methods of numeric solution of the FPKE� e�g�� explicit
di�erence scheme� implicit di�erence scheme� method of matrix continued fractions� We con�
sider the most simple method � explicit di�erence scheme� This scheme is the most slow� but
may be easily understood and� besides� it is not a serious problem to correctly write boundary
conditions for this scheme�

Let we need to get a solution of the FPKE with initial condition W �x� t�� 
 W��x�� Consider
the net of nodes� located in points of crosses of two families of parallel lines�

x 
 c � ih� �i 
 �� �� ���� N � N 
 �d� c��h� t 
 jl� �j 
 �� �� �����

Nodes� located at the lines x 
 c� x 
 d� t 
 � we will call boundary nodes� all other nodes are
internal� For each internal node �i� j� let us write di�erence scheme� approximating with some
precision the FPKE� Previously� let us note� that the FPKE may be presented in the form�

�
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�
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In equation ���� we can approximately substitute derivatives by di�erences in the following
form�

�W �x� t�

�x
�
Wi���j �Wi���j

�h
� ����

��W �x� t�

�x�
�

Wi���j � �Wi�j �Wi���j

h�
� ����

where Wi�j 
W �c� ih� jl�� The time derivative we substitute by di�erence forward relation�

�W �x� t�

�t
�
Wi�j�� �Wi�j

l
� ����

Substituting ����� ����� ���� into ����� we get�

Wi�j�� 
 	i�jWi���j � 
i�jWi�j � �i�jWi���j �j � ��� ����

where

	�x� t� 

l

�h�
D�x� t� �

l

�h

�
�

�

��

�x�
D�x� t�� a�x� t�

�
�


�x� t� 
 � �
l
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D�x� t� � l

�
�

�

��

�x�
D�x� t��

�

�x
a�x� t�

�
� ����

��x� t� 

l

�h�
D�x� t��

l

�h

�
�

�x
D�x� t�� a�x� t�

�
�

Di�erence scheme ���� contains values of solution in four nodes� one at the current moment of
time and three at the previous one� This scheme approximates FPKE equation ���� with the
precision O�l � h���

In the 	rst iteration of the program you should record initial values of the probability distribu�
tion� corresponding to x 
 c�ih� Boundary conditions may be either absorbingW��j 
WN�j 
 �
or re�ecting�

W��j 
 �
�h

D�x� t�

�
�a�x� t��

�D�x� t�

�x

�
W��j �W��j�

WN�j 

�h

D�x� t�

�
�a�x� t��

�D�x� t�

�x

�
WN���j �WN���j�

Thus� the formula ���� gives explicit expression of the solution in the layer j �� via previously
obtained solution in the layer j�

�



For the use of explicit di�erence scheme� the conditions of stability of algorithm should be
ful	lled� It can be demonstrated that the explicit di�erence scheme is stable� if in the considered
interval the following inequalities are ful	lled�

D�x� t� � �� l�h� � ��D�x� t��

It follows from the second inequality� that explicit di�erence scheme require very small time
step�

II� SOME EXAMPLES OF PROCESSES� WHICH TRANSITION PROBABILITY DENSITIES KNOWN

ANALYTICALLY

Wiener process�
A process which is described by the FPKE ��� with vanishing drift coe�cient a�x� 
 � and constant

di�usion coe�cient is called a Wiener process� The equation for the transition probability density
is then the di�usion equation�

�W �x� tjx�� t��

�t


D

�

��

�x�
W �x� tjx�� t��� ����

with the delta�shaped initial distribution W �x� t�jx�� t�� 
 ��x� x��� The solution of this equation
reads�

W �x� tjx�� t�� 

�q

��D�t� t��
exp

	
�

�x� x��
�

�D�t � t��



� ����

Ornstein�Uhlenbeck process�
A process which is described by the FPKE ��� with a linear drift coe�cient a�x� 
 �bx and con�

stant di�usion coe�cient is called the Ornstein�Uhlenbeck process� The equation for the transition
probability density is then�

�W �x� tjx�� t��

�t
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�bxW �x� tjx�� t��
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�x�
�D�x�W �x� tjx�� t��


�
� ����

The solution of this equation is also Gaussian distribution�

W �x� tjx�� �� 

�q

��D�t�
exp

	
�
�x� x�e

�bt��

�D�t�



� ����

where D�t� 
 D�� � e��bt���b is variance�
The probability distribution ���� may be obtained from equation ���� using the method of eigen�

function analysis� The required probability density may be represented as an in	nite Hermite series
and summarized into the probability density ����� But the same probability distribution may be
obtained by much more easy way using cumulant analysis technique ��
�
If you know that your system is linear and the noise is Gaussian� then the steady�state prob�

ability distribution always will be Gaussian� In the case of delta�shaped initial distribution the
one�dimensional probability density �the transition probability density� will be Gaussian for any
moment of time� If you have some arbitrary initial probability distribution then you may get
the one�dimensional probability density by simple averaging of transition probability density over

�



initial probability distribution� But your system is linear for the case of linear drift coe�cient
a�x� t� 
 �bx� f�t� where f�t� is an arbitrary function of time�
In this case you may use the cumulant analysis technique� get linear di�erential equations of the

	rst order for the mean m�t� and the variance D�t��

dm�t�

dt

 �bm�t� � f�t��

dD�t�

dt

 ��bD�t� �D�

and easily solve them� The obtained mean and variance you should substitute in the Gaussian
distribution of the general form�

W �x� tjx�� �� 

�q

��D�t�
exp

	
�
�x�m�t���

�D�t�



����

and then you get the required transition probability density�
However� I know only one real superconductive device which has small nonlinearity and may be

approximately treated as linear� this is a microwave nonhysteretic SQUID�
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I� TIME SCALES OF BROWNIAN DIFFUSION� INTRODUCTION

The Fokker�Planck equation is a partial di�erential equation� In most cases� its time dependent
solution is not known analytically� Also� if it has more than one state variable� exact stationary solu�
tions are very rare� That is why the most simple thing is to obtain approximate time characteristics
when analyzing the dynamics of di�usion transition processes�
The �rst paper devoted to escape problem to appear in western literature� was paper by Kramers

��� published in �	
�� and presented approximate� but complete analytic results� Some years before�
in �	��� Pontryagin� Andronov and Vitt �
� published a paper� where were presented exact analytic
results on the same subject� but this paper remained unknown outside the USSR for a long time�
The original work of Kramers stimulated research devoted to calculation of escape rates in di�erent

systems driven by noise� Now the problem of calculating escape rates is known as Kramers� problem�

II� TIME SCALES OF BROWNIAN DIFFUSION� KRAMERS� APPROACH

Let us consider the potential ��x�� describing a metastable state� depicted in Fig���

FIG� �� Potential� describing metastable state�

Initially� an overdamped Brownian particle is located in the potential minimum� say somewhere
between x�� x�� Subjected to noise perturbations� the Brownian particle will after some time escape
over the potential barrier of the height ��� It is necessary to obtain the mean life time of metastable
state �inverse of the mean life time �escape time� is called the escape rate��

�



To calculate the mean escape time over a potential barrier� let us apply the Fokker�Planck�
Kolmogorov equation� which may be also presented in the form�

�W �x� t�

�t
�

�

�x

�
kT

h
e���x��kT

�

�x

h
e��x��kTW �x� t�

i�
� ���

where we substituted a�x� � �d��x�
hdx

� Here h is viscosity� D � 
kT�h�
Let us consider the case when the di�usion coe�cient is small� or� more precisely when the barrier

height �� is much larger than the di�usion coe�cient D� As it turns out� one can get analytic
expressions for the mean escape time in this limiting case� Further more� we restrict ourselves to a
constant di�usion coe�cientD� Then the probability currentG over the barrier top near xmax is very
small� so the probability density W �x� t� almost does not vary in time� representing quasi�stationary
distribution� For this quasi�stationary state the small probability current G must be approximately
independent of coordinate x and can be presented in the form�

G � �

�
kT

h
e���x��kT

�

�x

h
e��x��kTW �x� t�

i�
� �
�

Integrating �
� between xmin and d we obtain�

G

dZ
xmin

e��x��kTdx �
kT

h

h
e��xmin��kTW �xmin� t�� e��d��kTW �d� t�

i
� ���

or if we assume that at x � d the probability density is nearly zero �particles may for instance be
taken away that corresponds to absorbing boundary� we can express the probability current by the
probability density at x � xmin� i�e�

G �
kT

h
e��xmin��kTW �xmin� t��

dZ
xmin

e��x��kTdx� �
�

If the barrier is high� the probability density near xmin will be given approximately by the stationary
distribution�

W �x� t� � W �xmin� t�e
����x����xmin���kT � ���

The probability P to �nd the particle near xmin is�

P �

x�Z
x�

W �x� t�dx �W �xmin� t�e
��xmin��kT

x�Z
x�

e���x��kTdx� ���

If kT is small� the probability density becomes very small for x values appreciably di�erent from
xmin� which means that the x�� x� values need not be speci�ed in detail�
The escape time is introduced as the probability P devided by the probability current G� Then�

using �
� and ���� we can get the following expression for the escape time�

� �
h

kT

x�Z
x�

e���x��kTdx

dZ
xmin

e��x��kTdx� ���

Whereas the main contribution to the �rst integral stems from the region around xmin� the main
contribution to the second integral stems from the region around xmax� We therefore expand ��x�
for the �rst and second integrals according to�

�



��x� � ��xmin� �
�



����xmin��x� xmin�

�� ���

��x� � ��xmax� �
�



j����xmax�j�x� xmax�

�� �	�

We may then extend the integration boundaries in both integrals to �� and thus obtain the well�
known Kramers� escape time�

� �

�hq

����xmin�j����xmax�j
e���kT � ����

where �� � ��xmax� � ��xmin�� As shown by Edholm and Leimar ���� one can improve ���� by
calculating the integrals ��� more accurately� e�g� by using the expansion of the potential in ��� and
�	� up to the fourth term�
One can ask the question� What if the considered potential is such that either ����xmax� � � or

����xmin� � �� You may see that Kramers� formula ���� does not work in this case� This is a pity�
but because you know how Kramers� formula has been obtained� you may substitute the required
potential into integrals in ��� and derive another formula� similar to Kramers� one�

� � ���kT �e
���kT � ����

where the prefactor ���kT � is a function of temperature and re�ects particular shape of your potential�
For example you may easily get this formula for a piecewise potential of the fourth order� Formula
���� for ���kT � � const is also known as Arrhenius law�
In�uence of the shape of potential well and barrier on escape times was studied in detail in paper

by Adudov and Malakhov ��� and some of their results will be discussed here�
In the table �� the temperature dependencies of prefactor ���kT � for potential barriers and wells

of di�erent shape are shown in the limiting case of small temperature� For the considered functions
�b�x� and �t�x� the dependence ���kT � vary from �� � �kT �	 to �� � �kT ���� The functions �b�x�
and �t�x� are� respectively� potentials at the bottom of the well and the top of the barrier� As
it follows from table �� the Arrhenius law ����� i�e� ���kT � � const� occur only for such forms of
potential barrier and well that ��p � ��q � �� This will be the case for a parabolic well and barrier
�p � 
� q � 
�� and also for a �at well �p � �� and triangle barrier �q � ��� and� vice versa� for a
triangle well �p � �� and �at barrier �q ����
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Table �

III� TIME SCALES OF BROWNIAN DIFFUSION� EIGENFUNCTION AND EIGENVALUE ANALYSIS

Let us now consider symmetric bistable potential�

FIG� �� Bistable potential�
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Let us calculate the decay time of particles in the well which agrees with inverse of the lowest
nonvanishing eigenvalue �� �see previous lecture�� Using the method of eigenfunction analysis as
presented in lecture 
 we search for the solution of the Fokker�Planck�Kolmogorov equation in the
form

W �x� t� � X�x� � T �t�� ��
�

where X�x� and T �t� are functions of coordinate and time� and get the system of two equations for
functions X�x� and T �t��

�

T �t�

�T �t�

�t
� ��� ����

�
�

�x
��a�x�X�x�� �

�




��

�x�
�D�x�X�x��

�
� ��X�x�� ��
�

Using the boundary conditions and a delta�shaped initial distribution� we can write the solution of
the Fokker�Planck�Kolmogorov equation in the form�

W �x� t� �
�X
n��

Xn�x�Xn�x��

Wst�x��
e��n�t�t��� ����

where X��x� � Wst�x� and �� � �� Here we consider only the case where the steady�state probability
distribution does exist� Wst�x� �� �� and thus we should suppose re�ecting boundary conditions
G��d� � �� Analyzing expression ���� and taking into account that the eigenvalues �n represent a
set such that �� 	 �� 	 ��� 	 �n� we can see that the exponent with minimal eigenvalue will decay
slower than others� and will thus re�ect the largest time scale of decay which equals the inversed
minimal nonzero eigenvalue�
So� equation ��
� with boundary conditions is the equation for eigenfunction Xn�x� of the n � th

order� For X��x� the equation ��
� will be an equation for stationary probability distribution with
zero eigenvalue �� � � and for X��x� the equation will have the following form�

�

�x

�
kT

h
e���x��kT

�

�x

h
e��x��kTX��x�

i�
� ���X��x�� ����

Integrating equation ���� with account of re�ecting boundary conditions �probability current is equal
to zero at the points �d� we get�

kT

h

�

�x
e��x��kTX��x� � ���e

��x��kT

dZ
y

X��z�dz� ����

Integrating this equation once again� the following integral equation for eigenfunction X��x� may be
obtained�

X��x� � e���x��kT

�
�e��d��kTX��d� �

h��
kT

dZ
x

e��y��kTdy

dZ
y

X��z�dz

�
� � ����

The eigenfunction X��x� belonging to the lowest nonvanishing eigenvalue must be an odd function
for the bistable potential� i�e� X���� � �� The integral equation ���� together with re�ecting

�



boundary conditions determine the eigenfunction X��x� and the eigenvalue ��� We may apply an
iteration procedure which is based on the assumption that the noise intensity is small compared
to the barrier height �this iteration procedure is described in the book by Risken �
�� and get the
following expression for the required eigenvalue in the �rst order approximation�

�� � �kT�h��

dZ
�

e��y��kTdy

dZ
y

e���z��kTdz� ��	�

For a small noise intensity� the double integral may be evaluated analytically and �nally we get
the following expression for the escape time �inverse of the eigenvalue ��� of the considered bistable
potential�

�b �
�hq

����xmin�j������j
e���kT � �
��

The obtained escape time �b for the bistable potential is two times smaller than the Kramers� time�
because we considered transition over the barrier top x � �� that is why we have got only a half�

��
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I� THE FIRST PASSAGE TIME APPROACH

The �rst approach to get exact time characteristics of Markov processes with nonlinear drift
coe�cients was proposed in ���� by Pontryagin� Andronov and Vitt ��	� This approach allows to
obtain exact values of moments of the First Passage Time for arbitrary potentials and arbitrary
noise intensity� and moreover� the noise intensity 
di�usion coe�cient� may be nonlinear function
of coordinate� The only disadvantage of this method is that it requires an arti�cial introducing of
absorbing boundaries� which changes the process of di�usion in real smooth potentials�
Probability to reach a boundary by one�dimensional Markov processes

Let continuous one
dimensional Markov process x
t� at initial instant of time t � � has a �xed
value x
�� � x� within the interval 
c� d�� i�e� the initial probability density is the delta function�

W 
x� �� � �
x� x��� x� � 
c� d��

It is necessary to �nd the probability Q
x�� t� that a random precess� having initial value x� will
reach during the time t � � the boundaries of the interval 
c� d�� i�e� will reach either boundary c or

d� Q
x�� t� �
cR
��

W 
x� t�dx�
��R
d

W 
x� t�dx�

Instead of the probability to reach boundaries� one can be interested in the probability

P 
x�� t� � � �Q
x�� t�

of nonreaching of boundaries c and d by Markov process� having initial value x�� By other words

P 
x�� t� � Pfc � x
t� � d� � � t � Tg� x� � 
c� d��

where T � T 
c� x�� d� is a random instant of the First Passage Time of boundaries c or d�
We will not present here how to obtain the �rst Pontryagin�s equation for the probability Q
x�� t�

or P 
x�� t�� The intersted reader can see it in ��	 or in ��	 and ��	� We only mention� that the
�rst Pontryagin�s equation either may be obtained via transformation of the backward Kolmogorov
equation or by simple decomposition of the probability P 
x�� t� into Teylor expansion in the vicinity
of x� at di�erent moments � and t� � � some transformations and limiting transition to � � � ��	�
The �rst Pontryagin�s equation looks like�

�Q
x�� t�

�t
� a
x��

�Q
x�� t�

�x�
�
D
x��

�

��Q
x�� t�

�x��
� 
��

Let us point out the initial and boundary conditions of equation 
��� It is obvious that for all
x� � 
c� d� the probability to reach boundary at t � � is equal to zero�

Q
x�� �� � �� c � x� � d� 
��

At the boundaries of the interval� i�e� for x� � c and x� � d the probability to reach boundaries
for any instant of time t is equal to unity�

�



Q
c� t� � Q
d� t� � �� 
��

This means that for x� � c� x� � d the boundary will be surely reached already at t � �� Besides
these conditions usually one more condition must be ful�lled�

lim
t��

Q
x�� t� � �� c � x� � d�

expressing the fact that the probability to pass boundaries somewhen for a long enough time is equal
to unity�
The compulsory ful�lment of conditions 
��� 
�� physically follows from the fact that one


dimensional Markov process is nondi�erentiable� i�e� the derivative of Markov process has an in�nite
variance 
instantaneous speed is an in�nitely high�� However the particle with the probability equals
unity drifts for the �nite time to the �nite distance� That is why the particle velocity changes its
sign during the time and the motion occur in an opposite directions� If the particle is located at
some �nite distance from the boundary� it can not reach the boundary in a trice 
 the condition 
���
On the contrary� if the particle is located near a boundary then it necessarily cross the boundary 

the condition 
���
Let us mention that analogically may be solved the tasks about the probability to cross either only

left boundary c or the right one d or about the probability to do not leave the considered interval
�c� d	� In this case equation 
�� is valid� and only boundary conditions should be changed�
Also� one can be intersted in the probability to reach the boundary by Markov process� having

random initial distribution� In this case one should �rst solve the task with the �xed initial value x�
and after that the averaging for all possible values of x� should be performed� If initial value x� is
distributed in the interval 
c�� d�� � 
c� d� with the probability W�
x�� then� following the theorem
about the sum of probabilities� the complete probability to reach boundaries c and d is de�ned by
the expression�

Q
t� �

dZ
c

Q
x�� t�W�
x��dx� � Pfc� � x� � c� t � �g � Pfd � x� � d�� t � �g� 
��

Moments of the First Passage Time

One can get analytic 
exact� solution of the �rst Pontryagin�s equation only in a few simplest
cases� That is why in practice one restricts by calculation of moments of the First Passage Time of
absorbing boundaries� and� in particular� by the mean and the variance of the First Passage Time�
If the probability density wT 
x�� t� of the First Passage Time of boundaries c and d exists� then

by the de�nition ��	�

wT 
x�� t� �
d

dt
Q
x�� t� � �

d

dt
P 
x�� t�� 
��

Taking derivative from equation 
�� we get that wT 
x�� t� ful�ls the following equation�

�wT 
x�� t�

�t
� a
x��

�wT 
x�� t�

�x�
�
D
x��

�

��wT 
x�� t�

�x��
� 
��

with initial and boundary conditions�

wT 
x�� �� � �� c � x� � d�

wT 
c� t� � wT 
d� t� � �
t�� 
��

�



for the case of both absorbing boundaries and

wT 
d� t� � �
t��
�wT 
x�� t�

�x�

�����
x��c

� �� 
��

for the case of one absorbing and one re�ecting boundary�
The task to get the solution of equation 
�� with the above mentioned initial and boundary

conditions is mathematically quite di�cult even for simplest potentials �
x���
Moments of the First Passage Time may be expressed from the probability density wT 
x�� t� as�

Tn � Tn
c� x�� d� �

�Z
�

tnwT 
x�� t�dt� 
n � �� �� �� � � ��� 
��

Multiplying both sides of equation 
�� by ei�t and integrating it for t going from � to � we get
the following di�erential equation for the characteristic function 	
x�� i
��

�i
	
x�� i
� � a
x��
�	
x�� i
�

�x�
�
D
x��

�

��	
x�� i
�

�x��
� 
���

where 	
x�� i
� �
�R
�
ei�twT 
x�� t�dt�

Equation 
��� allows to �nd one
dimensional moments of the First Passage Time� For this purpose
let us use well
known representation of the characteristic function as the set of moments�

	
x�� i
� � � �
�X
n��


i
�n

n�
Tn
c� x�� d�� 
���

Substituting 
��� and its derivatives in 
��� and equating terms of the same order of i
 we get
the chain of linear di�erential equations of the second order with variable coe�cients�

D
x��

�

d�Tn
c� x�� d�

dx��
� a
x��

dTn
c� x�� d�

dx�
� �n � Tn��
c� x�� d�� 
���

Equations 
��� allow to sequentially �nd moments of the First Passage Time for n � �� �� �� � � �

T� � ��� These equations should be solved at the corresponding boundary conditions and by
physical implication all moments Tn
c� x�� d� must be nonnegative values� Tn
c� x�� d� � ��
Boundary conditions for equations 
��� may be obtained from the corresponding boundary condi


tions 
��� 
�� of equations 
�� and 
��� If boundaries c and d are absorbing� we get from 
���

T 
c� c� d� � T 
c� d� d� � �� 
���

If one boundary� say c� is re�ecting� then one can get from 
���

T 
c� d� d� � ��
�T 
c� x�� d�

�x�

�����
x��c

� �� 
���

If we will start solving the equation 
��� from n � �� then further moments Tn
c� x�� d� will be
expressed from previous moments Tm
c� x�� d�� In particular� for n � �� � we get�

D
x��

�

d�T�
c� x�� d�

dx��
� a
x��

dT�
c� x�� d�

dx�
� � � �� 
���
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D
x��

�

d�T�
c� x�� d�

dx��
� a
x��

dT�
c� x�� d�

dx�
� �T�
c� x�� d� � �� 
���

Equation 
��� was �rst obtained by Pontryagin and is called as the second Pontryagin equation�
System of equations 
��� may be easily solved� Indeed� making substitution Z � dTn
c� x�� d��dx�

each equation may be transformed in the �rst order di�erential equation�

D
x��

�

dZ

dx�
� a
x��Z � �n � Tn��
c� x�� d�� 
���

The solution of 
��� may be written by quadratures�

Z
x�� �
dTn
c� x�� d�

dx�
� e��x��

�
�A�

x�Z
c

�nTn��
c� y� d�

D
y�
e���y�dy

�
� � 
���

where �
y� � �
R �a�y�

D�y� dy� A is an arbitrary constant� determined from boundary conditions�

When one boundary is re�ecting 
e�g� c�� and another one is absorbing 
e�g� d�� then from 
���
and bondary conditions 
��� we get�

Tn
c� x�� d� � �n

dZ
x�

e��x�
xZ
c

Tn��
c� y� d�

D
y�
e���y�dydx� 
���

Because dTn
c� x�� d��dx� � � for any c � x� � d and dTn
c� x�� d��dx� � � for x� � c� and� as
follows from 
���� d�Tn
c� x�� d��dx�� � � for x� � c� the maximal value of the function Tn
c� x�� d� is
reached at x� � c�
For the case when both boundaries are absorbing� the required moments of the First Passage Time

has more complicated form�
When the initial probability distribution is not delta function� but some arbitrary functionW�
x���

where x� � 
c� d�� then it is possible to calculate moments of the First Passage Time� averaged over
initial probability distribution�

Tn
c� d� �

dZ
c

Tn
c� x�� d�W�
x��dx�� 
���

II� GENERALIZED MOMENT EXPANSION FOR RELAXATION PROCESSES

As we discussed in previous section� the Mean First Passage Time approach requires arti�cial
introducing the absorbing boundaries and� therefore� the steady
state probability distribution in
such systems does not exist� because eventually all particles will be absorbed by boundaries� But in
the large number of real systems the steady
state distributions do exist� and namely such systems
are considered in accordance with tasks of Josephson electronics 
e�g� SQUIDs� memory cells� and
so on��
Moreover� in experiments are usually measured stationary processes� and� thus� di�erent steady


state characteristics� such as correlation functions� spectra� di�erent averages�
First paper� devoted to obtaining characteristic time scales of di�erent observables in systems hav


ing steady states was paper by Nadler and Schulten ��	� Their approach is bazed on the generalized
moment expansion of observables and� thus� called as �generalized moment approximation� 
GMA��

�



The observables considered are of the type�

M
t� �

dZ
c

dZ
c

f
x�W 
x� tjx��g
x��dx�dx� 
���

where W 
x� tjx�� is the transition probability density governed by the Fokker
Planck
Kolmogorov
equation

�W 
x� t�

�t
�

�
�

�x

�
�
a
x�

kT
W 
x� t�

�
�

��

�x�
�D
x�W 
x� t�	

	
� 
���

g
x�� is initial probability distribution and f
x� is some test function that monitors the distribution
at the time t� The re�ecting boundary conditions at points c and d are supposed� which leads to the
existance of steady
state probability distribution Wst
x� 
see lecture ���

Wst
x� �
C

D
x�
exp

�
��

xZ
x�

a
x�

D
x�
dx

�
� � 
���

where C is normalization constant�
The observable has initial value M
�� �� f
x�g�
x� � and relaxes asymptotically to M
�� ��

f
x� �� g�
x� �� Here �� is ensemble average and g�
x� � g
x��W�
x��

W�
x� � exp

�
� xZ
x�

a
x�

kT
dx

�
� � 
���

Since the time development of M
t� is solely due to the relaxation process� one needs to consider
only �M
t� �M
t��M
���
Starting point of the generalized moment approximation 
GMA� is the Laplace transformation of

observable

�M
�� �

�Z
�

�M
t�e��tdt� 
���

�M
�� may be expanded for low and high frequencies

�M
�� ����

�X
n��


��n���
���
n� 
���

�M
�� ����

�X
n��


n
�����
n� 
���

where the expansion coe�cients 
n� the �generalized moments�� are given by


n � 
���n
dZ
c

g
x�
n

L�
x��n

o
b
f
x�dx� 
���

where fg
b
denotes operation in a space of functions which obey the adjoint re�ecting boundary

conditions� L�
x� is the adjoint Fokker
Planck operator�

�



L�
x� � �

�
a
x�

kT

�

�x
�D
x�

��

�x�

	
� 
���

In veiw of expansions 
��� and 
��� we will refer to 
n� n � � as the high
frequency moments and
to 
n� n � � as the low
frequency moments�
The moment 
� is identical to the initial value �M
t� and assumes the simple form�


� �� f
x�g�
x� � � � f
x� �� g�
x� � � 
���

For negative n 
see ��	�� the following recurrent expressions for the moments 
�n may be obtained�


�n �

dZ
c

dx

D
x�W�
x�

xZ
c

W�
x�
��n���
y�dy

xZ
c

W�
z�
g�
z�� � g�
z� ��dz� 
���

where


�n
x� � C �

xZ
c

dy

D
y�W�
y�

yZ
c

W�
z�
��n���
z�dz� 
���

where C is an integration constant� chosen to satisfy the orthogonality property� For n � � holds


�� �

dZ
c

dx

D
x�W�
x�

xZ
c

W�
x�
f
y�� � f
y� ��dy

xZ
c

W�
z�
g�
z�� � g�
z� ��dz� 
���

Moments with negative index� which account for the low
frequency behaviour of observables in
relaxation processes� can be evaluated by means of simple quadratures� Let us consider now� how
the moments 
n may be employed to approximate the observable �M
t��
We want to approximate �M
�� by a Pade approximant �m
��� The functional form of �m
��

should be such� that the corresponding time
dependent function �m
t� is a series of N exponentials
describing the relation of �M
t� to �M
�� � �� This implies that �m
�� is an �N � �� N 	
Pade
approximant which can be written in the form�

�m
�� �
NX
n��

an�
�n � �� 
���

or� correspondingly�

�m
t� �
NX
n��

an exp
��nt�� 
���

The function �m
�� should describe the low
 and high
frequency behaviour of �M
�� to a desired
degree� We require that �m
�� reproduces Nh high
 and Nl low
frequency moments� Since �m
��
is determined by an even number of constants an and �n one needs to choose Nh � Nl � �N � We
refer to the resulting description as the 
Nh� Nl�
generalized
moment approximation 
GMA�� The
description represents a two
sided Pade approximation� The moments determine the parameters an
and �n through the relations

NX
n��

an�
m
n � 
m� 
���

�



where m � �Nl��Nl � �� ���� Nh � ���
Algebraic solution of equation 
��� is feasible only for N � �� �� For N � � the numerical soluiton

of 
��� is possible by means of an equivalent eigenvalue problem� for references see ��	�
Let us mention in conclusion� that approach by Nadler and Schulten allows to obtain characteristic

time scales of di�erent observables� Moreover� for one particular example of rectangular barrierless
potential well� the authors demonstrated that even one
exponential approximation describes the
required observable with a good precision�
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����� �translated by J�B�Barbour and reproduced
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Springer�Verlag� ������
��� P�Hanggi� P�Talkner and M�Borkovec� Rev�Mod�Phys�� ��� ��� 
������
��� V�I�Tikhonov and M�A�Mironov� Markovian processes 
Sovetskoe Radio� Moscow� ����� in Russian��
��� H�Risken� The Fokker�Planck equation 
Springer Verlag� Berlin� ������
��� W�Nadler and K�Schulten� Journ� Chem� Phys�� ��� ��� 
������
��� A�Szabo� K�Schulten and Z�Schulten� Journ� Chem� Phys�� ��� ���� 
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I� INTRODUCTION

When the noise�induced transition occurs over a potential barrier high enough in comparison
with noise intensity� the probability of transition is a simple exponent � exp��t�� � ���� where �
is the mean transition time� In this case the mean transition time gives complete information
about the probability evolution� The boundaries of validity of exponential approximation of the
probability were previously studied in �	�� �
�� In �	� authors extended the Mean First Passage Time
to the case of �radiation� boundary condition and for two barrierless examples demonstrated good
coincidence between exponential approximation and numerically obtained probability� In a more
general case the exponential behavior of observables was demonstrated in �
� for relaxation processes
in systems having steady states� Using the approach of �generalized moment approximation� the
authors of �
� obtained the exact mean relaxation time to steady state and for particular example
of a rectangular potential well demonstrated good coincidence of exponential approximation with
numerically obtained observables �including probability�� The considered in �
� example of the
rectangular well does not have a potential barrier� and the authors of that paper supposed that
their approach �and the corresponding formulas� should also give good approximation in tasks with
di�usive barrier crossing for a wide range of noise intensity�
In the frame of this lecture� let us consider a di�erent case than in �	�� �
�
 let us analyse temporal

dynamics of the nondecay probability of a metastable state �see ��� and also ��� where a bistable
system was considered�� We treat the decay as a transition of a Brownian particle outside the region
of a metastable state� Using the approach proposed byMalakhov ���� ���� that requires only knowledge
of the behavior of a potential at ��� the required nondecay probability may be decomposed into
a set of moments �cumulants�� obtained recurrent formulas for these moments and approximately
summarized them into the required probability� We will see� that the obtained nondecay probability
demonstrates exponential behavior with a good precision even in the case of a small potential barrier
in comparison with noise intensity�

II� MAIN EQUATIONS AND SET UP OF THE PROBLEM

Consider a process of Brownian di�usion in a potential pro�le ��x�� Let a coordinate x�t� of the
Brownian particle described by the probability density W �x� t� at initial instant of time has a �xed
value x��� � x� within the interval �c� d�� i�e� the initial probability density is the delta function

W �x� �� � ��x� x��� x� � �c� d��
In this case the one�dimensional probability density W �x� t� is the transition probability density

from the point x� to the point x
 W �x� t� � W �x� t�x�� ��� It is known that the probability density
W �x� t� of the Brownian particle in the overdamped limit satis�es to the Fokker�Planck equation
�FPE�


�W �x� t�

�t
� ��G�x� t�

�x
�
�

B

�
�

�x

�
d��x�

dx
W �x� t�

�
�
��W �x� t�

�x�

�
� ���

�



with the delta�shaped initial distribution� Here B � h�kT � G�x� t� is the probability current� h is the
viscosity �in computer simulations we put h � ��� T is the temperature� k is the Boltzmann constant
and ��x� � ��x��kT is the dimensionless potential pro�le� In this paper we restrict ourselves by the
case of metastable potentials� i�e� we consider an overdamped Brownian motion in a potential �eld
��x� in systems� having metastable states� such that ����� � �� and ����� � ��� This leads
to the following boundary conditions
 G���� t� � W ���� t� � �� Note� that the results obtained
may be generalized for potentials of arbitrary types� e�g� for such that ����� ���
It is necessary to �nd the probability P �x�� t� of a Brownian particle� located at the point x�

�t � �� within the interval �c� d� to be at the time t 	 � inside of the considered interval
 P �x�� t� �
dR
c
W �x� t�dx� Further we for simplicity will call the probability P �x�� t� as nondecay probability�

We suppose� that c and d are arbitrary chosen points of an arbitrary potential pro�le ��x� and
boundary conditions at these points may be arbitrary
 W �c� t� � �� W �d� t� � �� In this case there
is the possibility for a Brownian particle to come back in the interval �c� d� after crossing boundary
points�

III� MOMENTS OF DECAY TIME

Consider the nondecay probability P �x�� t�� We can decompose this probability to the set of
moments� On the other hand� if we know all moments� we can in some cases construct a probability
as the set of moments� Thus� analogically to moments of the First Passage Time ���� ���� we can
introduce moments of decay time �n�c� x�� d� �or� generally� moments of transition time� see �����
where it was performed for the probability Q�x�� t� � � � P �x�� t��


�n�c� x�� d� �
 tn 	�

�R
�
tn �P �x��t�

�t
dt

P �x����� P �x�� ��
� �	�

Here we can formally denote the derivative of the probability divided by the normalization factor
as w�x�� t� and thus introduce the probability density of decay time w�x�� t� in the following way
����


w�x�� t� �
�P �x�� t�

�t

�

�P �x����� P �x�� ���
� �
�

It is important to mention that the moments of decay �transition� time �	� is a generalization of the
well�known moments of the First Passage Time for the case of arbitrary boundary conditions �see
discussion in ������ For example� in the considered case of the potential ��x� �such that ����� �
�� and ����� � ��� the moments of decay time coincide with the corresponding moments
of the First Passage Time� if a re�ecting boundary at the point c and an absorbing boundary at
the point d are introduced� On the other hand� if we consider the decay of metastable state as
transition over a barrier top� and compare mean decay time obtained via approach discussed in the
present paper �case of a smooth potential without absorbing boundary� and the mean First Passage
Time of the absorbing boundary located at the barrier top� we get two times di�erence between
these time characteristics even in the case of a high potential barrier in comparison with the noise
intensity� This di�erence may be signi�cantly larger for a small barrier height� moments of the First
Passage Time may both underestimate and overestimate the moments of decay time� depending on
the concrete shape of the potential pro�le�

�



The cumulants of decay time �n ��	�� ���� are much more useful for our purpose to construct the
probability P �x�� t�� that is the integral transformation of the just introduced probability density
of decay time w�x�� t�� Unlike the representation via moments� the Fourier transformation of the
probability density �
� � the characteristic function � decomposed into the set of cumulants may be
inversely transformed into the probability density�
The required moments of decay time may be obtained via the approach proposed by Malakhov

���� ���� This approach is based on the Laplace transformation method of the FPE ���� Following

this approach� one can introduce the function H�x� s� � s �G�x� s�� where �G�x� s� �
�R
�
G�x� t�e�stdt is

the Laplace transformation of the probability current� and expand it in the power series in s


H�x� s� � s �G�x� s� � H��x� � sH��x� � s�H��x� � � � � ���

It is possible to �nd the di�erential equations for Hn�x� �see ���� ���� dH��x��dx � ��


dH��x�

dx
� ��x� x���

d�Hn�x�

dx�
�
d��x�

dx

dHn�x�

dx
� BHn���x�� n � 	� 
� �� � � �

���

Using the boundary conditions W ���� t� � � and G���� t� � �� one can obtain from ��� H��x� �
��x� x�� and

H��x� � �B
xR
��

e���v�
�R
v
e��y���y � x��dydv�

Hn�x� � �B
xR
��

e���v�
�R
v
e��y�Hn���y�dydv� n � 
� �� �� � � �

���

Why did we calculate this recurrent formula for the functions Hn�x�� The matter is� that from
formula �	� �taking the integral by parts and Laplace transforming it using the property P �x�� ���
s �P �x�� s� � �G�d� s�� �G�c� s� together with the expansion ���� one can get the following expressions
for moments of decay time


���c� x�� d� � ��H��d� �H��c���
���c� x�� d� � 	�H��d��H��c���
���c� x�� d� � �	 � 
�H��d� �H��c��� � � �
�n�c� x�� d� � ����nn��Hn���d� �Hn���c���

���

One can represent the n�th moment in the following form


�n�c� x�� d� � n��n� �c� x�� d� � rn�c� x�� d�� ���

where the remainder rn�c� x�� d� is much smaller than n��n� �c� x�� d� for �� 	 � ��� � ���kT is
the dimensionless barrier height�� For �� 
 � the remainder becomes of importance and should be
taken into account� Using the properties of cumulants ��	�� similar representation can be obtained
for �n


�n�c� x�� d� � �n � ����n
� �c� x�� d� �Rn�c� x�� d�� ���

It is known that the characteristic function  �x�� �� �
�R
�
w�x�� t�ej�tdt �j �

p��� can be represented
as the set of cumulants �w�x�� t� � � for t 
 ��


 �x�� �� � exp

�
�X
n	�

�n�c� x�� d�

n�
�j��n

�
�

�



Unfortunately� nobody knows how to summarize this set exactly� If we will neglected by the remain�
ders Rn�c� x�� d� in ��� then the required set may be summarized and inverse Fourier transformed�
so we get


w�x�� t� �
e�t��

�
� ����

where � is the mean decay time ���� ��� �� �c� x�� d� � �� � ���


� �c� x�� d� � B

��
�

dZ
x�

e��x�
xZ
c

e���v�dvdx�

�Z
d

e��x�dx

dZ
c

e���v�dv

�	

 � ����

Probably� similar procedure was previously used �see ��� and references therein and also ��
�� for
summation of the set of moments of the First Passage Time� when exponential distribution of the
First Passage Time probability density was demonstrated for the case of a high potential barrier in
comparison with noise intensity�

IV� NONDECAY PROBABILITY EVOLUTION

Integrating probability density ����� taking into account de�nition �
�� we get the following ex�
pression for the nondecay probability P �x�� t� �P �x�� �� � �� P �x���� � ��


P �x�� t� � exp��t�� �� ��	�

where mean decay time � is expressed by ����� Where is the boundary of validity of formula ��	�
�and formulas ���������� To answer this question let us consider three examples of potentials having
metastable states and compare numerically obtained nondecay probability with its exponential ap�
proximation ��	�� We can use the usual explicit di�erence scheme to solve the FPE �	�� supposing
the re�ecting boundary condition G�cb� t� � � far above the potential minimum and the absorbing
one W �db� t� � � far below the potential maximum� instead of boundary conditions at ��� such
that the in�uence of boundaries at cb and db on the process of di�usion was negligible�
The �rst considered system is described by the potential ��x� � ax� � bx� �see Fig� ��� For

example� the following particular parameters may be taken
 a � 	� b � � that leads to the barrier
height �� � ��	� c � �	� d � 	a�
b� and kT � ���� �� 
� The corresponding curves of the numerically
simulated probability and its exponential approximation are presented in Fig�	� In the worse case
when kT � � the maximal di�erence between the corresponding curves is 
�	!�

�



FIG� �� Potential pro�le ��x
 � ax
�
� bx

��

FIG� �� Probability evolution in the potential ��x
 � ax
�
� bx

��

The second considered system is described by the potential ��x� � ax�� bx
 �see Fig� 
�� We can
take the following particular parameters
 a � �� b � ��� that leads to the barrier height �� � ��
�
c � ����� d � �a��b� and kT � ���� �� 
� The corresponding curves of the numerically simulated
probability and its exponential approximation are presented in Fig��� In the worse case �kT � ��
the maximal di�erence between the corresponding curves is 
��!�
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FIG� �� Potential pro�le ��x
 � ax
�
� bx

��

FIG� �� Probability evolution in the potential ��x
 � ax
�
� bx

��

The third considered system is described by the potential ��x� � � � cos�x� � ax �see Fig� ���
This potential is multistable� Let us considere it in the interval ����� ���� taking into account
three neighboring minima� Let� we take a � ���� that leads to the barrier height �� � ����
c � �� � arcsin�a�� d � � � arcsin�a�� x� � arcsin�a�� and kT � ���� ��
� �� The corresponding
curves of the numerically simulated probability and its exponential approximation are presented in
Fig��� In di�erence with two previous examples� this potential was considered in essentially longer
interval and with smaller barrier� Thus� the di�erence between curves of the numerically simulated
probability and its exponential approximation is signi�cantly larger� Nevertheless� the qualitative
coincidence is good enough�

�



FIG� �� Potential pro�le ��x
 � �� cos�x
� ax�

FIG� �� Probability evolution in the potential ��x
 � �� cos�x
� ax�

V� CONCLUSION

For all investigated examples� the exponential approximation gives an adequate behavior of the
probability� if proper time scale is substituted into the factor of exponent� This approximation may
be used in a wide range of parameters� enough for solution of many practical tasks� but it is necessary
to remark� that the exponential approximation will lead to a signi�cant error in the case of extremely
large noise intensity� and in the case when the noise intensity is small� the potential is tilted� and
the barrier is absent �purely dynamical motion slightly modulated by noise perturbations��
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I� INTRODUCTION

The investigation of nonlinear properties of Josephson junctions �JJs� is very important owing to
their broad applications in logic devices� In past ten years� a lot of attention was payed to Josephson
logic devices with high damping ���� �	� because of their high�speed switching in comparison with
underdamped devices� Papers �
�� �	� present a description and analysis of the entire system of
logic elements �single �ux quantum logic devices�� The processes going on in such devices are based
on a reproduction of quantum pulses due to spasmodic changing by �� of the phase di
erence of
overdamped JJs�
It is well known that the use of HTS overdamped Josephson junctions as logic devices and memory

cells is quite perspective because of low cooling costs and high operating frequencies �see� e�g�� ���� ����
and also proceedings of the last ASC� ISEC� and EUCAS conferences�� However� higher operation
temperatures lead to higher noise levels and an increase in thermally�induced switching errors ����
One of the problems arising in the design of HTS Josephson devices is the absence of a complete
theory of noise�induced transitions in nonlinear systems� valid for arbitrary noise intensity� Moreover�
the di
erence between the theoretically predicted �on the basis of approximate approaches ���� and
the experimentally observed switching probability of a Josephson balanced comparator has been
recently demonstrated for temperatures above �� K ����
The aim of the present lecture is detailed analysis of noise properties of two simple overdamped

Josephson elements forming the basis of many di
erent types of logic devices� single Josephson
junction and bistable memory cell on the basis of single junction SQUID�

II� SINGLE OVERDAMPED JOSEPHSON JUNCTION� THE MODEL AND MAIN EQUATIONS

It is known� that processes going on in a single JJ of a small size under a current I with �uctuations
taken into account are well described by the Langevin equation� Let us restrict our consideration by
JJs with high damping � � �� which are widely used in logic elements with high�speed switching�

Here � �
�e

�h
IcR

�
NC is the McCamber�Stewart parameter� Ic is the critical current� R

��
N � GN is

the normal conductivity of a JJ� C is the capacitance� e is the electron charge and �h is the Planck
constant� In this case the Langevin equation takes the following form�

���c

d��t�

dt
� �du���

d�
� iF �t�� ���

where

u��� � �� cos�� i� ���

is the dimensionless potential pro�le �see Fig� ���� � is the di
erence in the phases of the order

parameter on opposite sides of the junction� i �
I

Ic
� iF �t� �

IF
Ic
� IF is the random component of the

current� �c �
�eRNIc
�h

is the characteristic frequency of the JJ�

�



FIG� �� Potential pro�le� describing single Josephson junction�

In the case when only thermal �uctuations are taken into account ���� the random current may be
represented by the white Gaussian noise�

� iF �t� �� �� � iF �t�iF �t� � � ��
�	

�c

�� ��

where 	 �
�ekT

�hIc
�

IT
Ic
is the dimensionless intensity of �uctuations� T is the temperature and k is

the Boltzmann constant�
If �uctuations are small enough� we can neglect it and Eq� ��� transforms to the dynamic equation�

���c

d��t�

dt
� �du���

d�
� �
�

Let us consider a single JJ� biased by a constant current I� �
�� If the current going on across the
junction is not so large� I� � Ic� then Eq� �
� has the set of the steady�state solutions�

�n � arcsin�I��Ic� � ��n� �n � �������� �����
Any such a solution describes a �superconductive� or a �steady�state� S�state of the JJ� if I� � Ic

a voltage across the junction is equal to zero� It is obviously� that if there are no �uctuations in the
system� the phase di
erence will be in�nitely long time located in the potential minimum number n
and without any restrictions we can assume that ninitial � �� However� if the �uctuations intensity is
not equal to zero� there is a �nite probability of the phase di
erence jump across a barrier towards a
neighbour potential minimum� The mean time between two sequential jumps is called the life time
of the S�state�
If a current across the JJ is larger than the critical current� I � Ic� there are no steady�state

solutions of Eq� �
� and such a state is known as the resistive state �R�state��
If the current I � Ic is applied� the JJ switches to the R�state� However� an output pulse will be

born not at the same moment� but at the later time� Such a time is called the turn�on delay time
between input and output �reproduced� pulses �
�� ����� Thus� the input pulse at the time t � �
changes the current across the junction from the value I� � Ic to the value I � Ic� turns�on the
system from the superconductive state to the resistive one and the phase di
erence begins to slide
down in the potential pro�le� causes the process of Josephson generation�
If the duration of the pulse front is much smaller than the turn�on delay �a rectangular pulse� then

at initial instant of time the phase di
erence will be still located at the point� where it was in the

�



S�state and no generation would be observed� In this case the time of the turn�on delay like the life
time of the S�state may be de�ned as the transition time of the phase di
erence from the point �� �a
minimum of an initial potential well� to some point � over a barrier� Such an identity of these time
de�nitions is connected with the fact that at the presence of �uctuations the distinction between
terms the S�state and the R�state has no sense� because Josephson generation becomes possible at
I � Ic ����� That is why it has signi�cance to introduce a unite term of the life time of metastable
state � � implying the life time of the S�state at I � Ic and the turn�on delay time at I � Ic� In the
paper ���� � was de�ned as a reach time from the point ��� to the point ��� � ���� We following
this procedure� for uni�cation change ��� � ��� to � and then � � obtained analytically in the paper
���� without any �uctuations� takes the form �i � ���

�d �
�

�c

�
�p
i� � �

�
� � � arctan

�
i� �p
i� � �

���
� �	�

The use of high�Tc superconductors are connected with increasing of �uctuations intensity� because

the parameter IT �
�ekT

�h
increases with increasing of temperature T � In the case when 	 increases�

ignoring of the �uctuations becomes incorrect and it is necessary to operate directly with Eq� ����
so the phase di
erence becomes a random value described by the probability density W ��� t��
It is well known that the Fokker�Planck equation �FPE� for the probability density W ��� t� corre�

sponding to Eq� ��� has the form�


W ��� t�


t
� �
G��� t�


�
� �c





�

�
du���

d�
W ��� t� � 	


W ��� t�


�

�
� ���

The initial and boundary conditions on the probability density and the probability current for the
potential pro�le ��� are as follows�

W ��� �� � 
��� ���� W ���� t� � �� G���� t� � ��

The presence of �uctuations not only causes the �niteness of the life time of S�state ����� but
also in determined manner in�uences on the turn�on delay time� And we will analyze now in�uence
of �uctuations on these time characteristics� but �rst let us consider how �uctuations a
ect the
current�voltage characteristic of an overdamped single Josephson junction�

III� CURRENT�VOLTAGE CHARACTERISTIC OF SINGLE OVERDAMPED JOSEPHSON JUNCTION

As you remember� the voltage V �t� of a Josephson junction is connected with the phase ��t� by
the relation�

V �t� �
�h

�e

d��t�

dt
� ���

This means� that if we know time evolution of the phase as function of bias current � we know
the voltage� But we have a phase subjected to noise perturbations and wish to get averaged phase
� ��t� � which will give us averaged voltage � V �t� ��
Let us return again to the Langevin equation ���� This equation expresses the time derivative

of random phase� If we now perform averaging of the Langevin equation� taking into account that
mean value of noise is zero and substituting the concrete function for derivative of the potential ���
we get�

�



���c

d � ��t� �

dt
� i� � sin��� � � ���

Thus� if we know � sin��� �� then we know the required voltage� Moreover� we have to know only
stationary function � ��t� � and� thus� stationary function � sin���t�� � to get the current�voltage
characteristic which signi�cantly simpli�es our task�
How can we get the function � sin��� �� The most natural way is to obtain the probability

density of the phase W ��� t� and get the required � sin��� � as� � sin��� ��
�R
��

sin�x�W �x� t�dx�

But as you can guess� the stationary probability density is equal to zero in the considered case�
described by the potential ��� with the mentioned boundary conditions at ���
Here one old trick can help us� I even do not remember who �rst used it� but it was known long

time before the original paper by Ambegaokar and Halperin ����� who �rst applied it to get the
current�voltage characteristic of overdamped single JJ with noise taken into account�
Because of periodicity of the required function sin��� one can introduce periodic boundary

conditions W ��� t� � W ���� t� and consider the process of di
usion within the reduced inter�

val ���� �� due to the fact that�
�R
��

sin�x�W �x� t�dx �
�P

n���

�R
��
sin�x � ��n�W �x � ��n� t�dx �

�R
��
sin�x�Wr�x� t�dx� where Wr�x� t� is the reduced probability density� This reduced probability

density will already reach nonzero steady�state distribution for t � �� The steady�state reduced
probability density Wr����� � Wrst��� may be obtained from equation ���� supposing that the
time derivative is equal to zero� and integrating the reminder twice� Two arbitrary constants are de�

termined from the periodic boundary condition and from normalization condition
�R
��

Wrst�x�dx � ��

The reduced steady�state probability density Wrst��� has the form�

Wrst��� �
e�u�����

x���R
x

eu�y���dy

�R
��

e�u�x���
x���R
x

eu�y���dydx

� ���

where the potential u��� is expressed by formula ���� 	 is the dimensionless noise intensity�
Using the obtained reduced steady�state probability density one can get hsin���i and� thus� the

required current�voltage characteristic� For more details you may see the original paper by Ambe�
gaokar and Halperin ����� I only wish to mention� that due to noise in�uence even in superconducting
state you may observe some nonzero voltage at the Josephson junction� and namely because of this
reason the distinction between terms the S�state and the R�state has no sense at nonzero noise
intensity�

IV� EXACT TIME CHARACTERISTICS

Let us analyze now in�uence of �uctuations on the superconductive state life time and the turn�on
delay time� The used method for obtaining the required time characteristics was presented in detail
in previous lecture and we will not consider it here�
Let me remind that the required time characteristics may be introduced from the probability

P ���� t� that transition of the phase point from �� outside the considered interval ���� ��� will not

occur during the time t � �� P ���� t� �
��R
��
W ��� t�d��

�



By analogy to moments of the First Passage Time �FPT� we can introduce the moments
�n���� ��� ��� � �n of transition time ���� bearing in mind that the phase point may cross the
boundary many times before leaving the considered interval�

�n �� tn ��

�R
�
tn �P ����t�

�t
dt

P ������� P ���� ��
� ���

where P ������ � P ���� �� �
�R
�

�P ����t�
�t

dt is the factor of normalization� In our particular case

P ���� �� � �� P ������ � ��
Let me remind also that we agreed above to introduce a unite term of the life time of metastable

state �or� equivalently� the mean escape time� � � implying the life time of the S�state at I � Ic and
the turn�on delay time at I � Ic�
So� using the approach proposed by Malakhov ���� one can get the exact expression of the mean

escape time of the random value � from the interval ���� ��� for an arbitrary potential pro�le u���
with u���� � ��� u���� � ���

� � B

��
	

��Z
��

eu�x���
xZ

��

e�u�����d�dx�

��Z
��

e�u�����d� �
�Z

��

eu�����d�


�
�� ����

Thus� as it follows from Eq����� the life time of the metastable state for the potential pro�le
u��� � � � cos�� i� has the form�

� � B

��
	

��Z
��

e��cosx�ix���
xZ

��

e�cos��i����d�dx�

�

��Z
��

e�cos��i����d� �
�Z

��

e��cos��i����d�


�
�� ����

Let us analyze the formula ���� for di
erent values of the current i and the �uctuations intensity
	� For � � i � � and 	 � � the asymptotic representation of the formula ���� may be also obtained
by the Kramers� method ��
�� �����

�K �
��

�c
p
�� i�

e�� ����

where � � �u�	 � ��
p
�� i� � �i�arcsin i � �

�
���	 is the dimensionless potential barrier height

�Fig� ��� The results of computer simulation of Eq� ���� demonstrate that for i � ��
 formula ����
holds true up to � � � �see Fig� �� where � � �c� � �K � �c�K� �� � �� �� � arcsin�i�� �� � ���
i � ����� For i � ��
� however� the di
erence between � �see Eq� ����� and �K increases� process
of di
usion becomes slower because of in�uence of neighbour potential barriers� For instance� at
i � ���� the ratio ���K � 	� for � � � and ���K � 	 for � � ��� Actually� formula ���� is valid
only for i � �� because at i � � the process of di
usion from the initial well is going on very slowly
and the de�nition ��� does not applicable here� The results� presented in paper ��	� demonstrate
that the time scale of di
usion from a potential well to a �at pro�le is proportional to 	 e��� where
� is the dimensionless depth of the well�

�



FIG� �� The exact metastable state life time � and Kramers
 time �K� versus the potential barrier height � �� � �c� �
�K � �c�K� �� � �� �� � arcsin�i�� �� � ��� i � �����

If the intensity of thermal �uctuations is large� 	 
 �� both for i � � and for i � � the in�uence
of cosinusoidal part of the potential becomes small and we can consider the potential u��� � �� i��
Then � approximately equals�

� � �

�c



�� � ��

i
�

	

i�

n
�� ei���������

o�
� ��
�

i�e� the life time increases proportionally to increasing of the �uctuations intensity� However� at
very large 	� ei��������� tends to unity and we get the indeterminate form which may be evaluated
as follows�

� � �

�c



�� � ��

i

�
� ��	�

so � does not depend on the �uctuations intensity�
For i � � and 	 � � one can obtain the following asymptotic representation of the formula �����

� � �

�c

��
	 �p

i� � � arctan
�
i tan�x��� � �p

i� � �

������
x���

x���

�

�	

�
�

��i� sin����
�

�

��i� sin����

�
�

�	�
��Z
��

�

 cos� x

�i� sinx�� �
sinx

�i� sin x�	
�
dx� ���

�
� ����

If the �uctuations intensity is equal to zero �	 � ��� then formula ���� coincides with the formula
obtained without any �uctuations in paper ���� and� in particular� with formula �	� for �� � � and
�� � ����
Thus� the representation ���� shows that increasing of the �uctuations intensity for 	 � � causes

increasing of the metastable state life time �see Fig� 
� where � � �c� � Figs� 
 and 	 were plotted
for �� � �� �� � ���� �� � ����

�



FIG� �� The turn�on delay time �� versus the current i for di�erent values of � �� � �c� � �� � �� �� � �	�� �� � ����

FIG� �� The turn�on delay time �� versus the intensity of thermal �uctuations � for di�erent values of i �� � �c� � �� � ��
�� � �	�� �� � ���

The e
ect of turn�on delay increasing may be considered in detail by plotting the dimensionless
time � as a function of the �uctuations intensity for di
erent values of the current i� Figure 	
demonstrates three di
erent intervals of ��	��curve behaviour� It may be explained taking into
account the competition of two factors� the variance� increasing with increasing of a temperature
and an in�uence of the returning force of the potential pro�le ����
When the phase variance is not so large� the main part of the phase probability distribution is

located on the �at part near the point � � ��� and the �uctuations in�uence is more than the
returning force in�uence� Further� when the variance� quantity becomes larger� the returning force
quickly increases with the coordinate and we can see decreasing of the turn�on delay time� Finally�
when the variance� value becomes large enough� we should take into account an in�uence of another
potential periods and the asymptote of ��	��curve may be represented by formulae ��
�� ��	�� Note�
in conclusion� that for 	 � �� as it should� � both in formulae ���� and ���� does not depend on ��

value� because in this case the backward probability current is negligibly small�

Conclusions

Application of JJs as elements of logic devices supposes that the probability of thermally induced
errors should be small enough� i�e� the life time of the �correct� state should be much larger than the
operation cycle� Simple estimations following from the above presented formulae can demonstrate

�



the bound of the �uctuations intensity 	 below which the logic element will function properly�
Considering for the sake of simplicity the turn�on delay time as the main part of an operation cycle�
one can see �Fig� 
� that in terms of the dimensionless time � � �c � � � the turn�on delay time is
approximately equal to unity for i � � and � � � for i � ���� The prefactor of the formula ����
for i � ��� is of the order of ��� substituting � � �� into this formula� we get the value of S�state
life time equals ��� � ��
 that is well above than the turn�on delay time� Taking into account that
�u � ��� for i � ���� it is enough to assume 	 � ���� in order that � to be ��� The in�uence of
thermal �uctuations on the turn�on delay time for 	 � ���� is well predicted by formula �����
For example� it is interesting to plot the function E�i� � ����d � �� for 	 � ����� where � is the

exact turn�on delay time ���� and �d is described by formula �	� �see Fig� ��� The function E�i�
demonstrates the relative di
erence between � and �d� and help to choose the interval of the current
i� in which the relative error E�i� will be as small as necessary for concrete applications�

FIG� �� The relative di�erence E�i� between � and �d� versus the current i� demonstrating the e�ect of �uctuations on the
turn�on delay time �� � ����� �� � �� �� � �	�� �� � ����

V� BISTABLE MEMORY CELL BASED ON SINGLE JUNCTION SQUID

The single junction SQUID ���� �consisting of a superconducting ring enclosed by a Josephson
junction� is used for storage of information as the main element of memory cells� When the the
SQUID is applied as a bistable memory cell� one of the most important parameters is immunity to
thermal �uctuations which can spontaneously switch the memory cell from one state to another�
However� because of mathematical di�culties� only approximate evaluations have been done before
for such important characteristics as the mean decay time of the �correct� state �or mean time of
spontaneous switching�� while the variance and higher cumulants of the decay time have not been
investigated� Also� it is known that� if the ratio between a potential barrier separating stable states
and noise intensity is high� the probability that decay of the �correct� state of the memory cell will
not occur until some time t �nondecay probability� is proportional to the exponent� 	 exp��t��K�
����� where �K � �K�� and �K is the approximate mean decay time of the �correct� state �Kramers�
time� ����� ��
��
Let us consider how it is possible to completely describe noise properties of the bistable memory

cell using the approach which we considered in previous lecture �����
It is known that the dynamics of an overdamped single junction SQUID with �uctuations taken

into account is well described by the Langevin equation ���� where the potential have the following
form�

�



u��� � �� cos�� ��� �e�
����� ����

� � ������ is the dimensionless �ux through the ring� �� is the �ux quantum� the quantity �e

describes the external �ux� � � L�L�� L is the inductance of the ring� L� � �����Ic� Ic is the critical
current of the junction�
In the case of nonzero noise intensity the �ux � is a random quantity described by the transitional

probability density W ��� t�� which is governed by the Fokker�Planck equation ���� The initial and
boundary conditions for Eq� ��� with the potential ���� are�

W ��� �� � 
��� ��� and G���� t� � �� ����

The nonlinear dynamical system described by the potential pro�le ���� may have one or several
stable states depending on quantities of parameters � and �e� To use the parametric quantron as
a memory cell� it is enough to have two stable states ����� which may be realized at 
 � � � ��
�e � �� In this particular case the potential ���� has the parabolic barrier separating two wells
with parabolic walls� slightly modulated by the cosine term� However� it is di�cult to analyze the
functioning of such a system because the solution of FPE ��� for the potential ���� is unknown�
When the potential barrier separating the stable states is high enough in comparison with the noise
intensity� �u
 	� it is possible to approximately obtain the mean decay time of the �correct� state
���� on the basis of the Kramers� method ��
� �� � �u�	��

�K �
��

b�c
e�� �
 �� ����

where b �
q
bminbmax� bmin and bmax are the curvatures of the bottom of the well and the top of

the barrier of the potential ����� respectively� In this case the probability P ���� t� that decay of the
�correct� state will not occur until some time t may be very well approximated by the exponent�

P ���� t� �
exp��t��K� � �

�
� �K � �K��� ����

Here �� is the coordinate of the initial delta�shaped probability distribution� Certainly� in the case
��������� the probability does not depend on ��� but searching further for the exact probability
evolution we will keep in mind the initial distribution at ��� Formula ���� may be obtained via
approach presented in the book by Gardiner �����
Let� initially� a bit of information be stored in the memory cell by locating the phase point in the

left minimum of the potential ����� such that �� � �� The decay time of the �correct� state we
de�ne as the time needed to cross the barrier top � � �� It is clear that this decay time is a random
value and the problem is how to obtain its mean � �  � �� t �� variance D �  � �� t� � � � t ��

and higher cumulants  n�
The required time characteristics may be introduced from the probability P ���� t� that transition

of the phase point from �� outside the considered interval ���� �� will not occur during the time

t � �� P ���� t� �
�R
��

W ��� t�d��

By analogy to moments of the First Passage Time �FPT� �
� we can introduce the moments
�n���� �� � �n of transition time ���� bearing in mind that even for an in�nitely long time the phase
point may still be located within the considered interval because lim

t��
P ���� t� � ����

�n �� tn ��

�R
�
tn �P ����t�

�t
dt

P ������� P ���� ��
� ����

	



where P ������ � P ���� �� �
�R
�

�P ����t�
�t

dt is the factor of normalization� In our particular case

P ���� �� � �� P ������ � ���� Here we can formally denote the derivative of the probability divided
by the factor of normalization as w���� t� and thus introduce the probability density of transition
time in the following way�

w���� t� �

P ���� t�


t�P ������� P ���� ���
� ����

It is easy to check that the normalization condition is satis�ed given with such a de�nition�
�R
�
w���� t�dt � �� The condition of nonnegativity of the probability density w���� t� � � is� ac�

tually� the monotonic condition of the probability P ���� t��
The above�mentioned cumulants of transition time  n are muchmore useful for our purpose to con�

struct the probability P ���� t� that is the integral transformation of the just introduced probability
density of transition time w���� t�� Unlike the representation via moments� the Fourier transforma�
tion of the probability density � the characteristic function � decomposed into a set of cumulants
may be inversely transformed into the required probability density� The representation of  n via
moments �n is described in the book by Malakhov ���� �see also ������

VI� MOMENTS OF DECAY TIME OF �CORRECT� STATE

It is known that there is the recurrent formula ���� for moments of the FPT of the boundary
located at � � c � �� by the phase point under noise perturbation �u���� � ����

Tn���� c� � nB

cZ
��

eu�����
�Z

��

Tn���x� c�e
�u�x���dxd�� ����

which represents the n�th moment of the FPT directly from the function of the potential pro�le
u��� and the �n� ���th moment� Here T����� c� � � and T����� c� is the mean FPT�
Using the duality of time characteristics� proved in ����� it can be demonstrated that all moments of

transition time �n in a symmetric potential over a point of symmetry coincide with the corresponding
moments of the First Passage Time of the boundary located at the point of symmetry� �n���� c� �
Tn���� c� �in our particular case c � ��� Thus� formula ���� is also valid for moments of transition
time� When the intensity of thermal �uctuations is much smaller than the barrier height� 	 � �u�
the following asymptotic representation can be obtained from formula ��� for moments of transition
time�

�n���� c� � n!�n����� c�� �u
 	� ��
�

The results of computer simulation demonstrate that expression ��
� is valid up to �u�	 � ��
Using the properties of cumulants ����� similar representation can be obtained for  n�

 n���� c� � �n� ��! n
� ���� c�� �u
 	� ��	�

It is known that the characteristic function "���� �� �
�R
�
w���� t�ej�tdt �j �

p��� can be represented
as a set of cumulants�

"���� �� � exp

�
�X
n��

 n���� c�

n!
�j��n

�
�

�




For our particular case ��	� this set can be summarized and inverse Fourier transformed� so we get�

w���� t� �
e�t�	

�
� �u
 	� ����

where � is the mean transition time �� ���� �� � �� �  ���

� ���� �� �
�

	�c

�Z
��

eu�����
�Z

��

e�u�x���dxd�� ����

with the asymptotic representation �� � �u�	��

� ���� �� � � �
�

b�c
e�� �
 �� ����

Formula ���� is� unfortunately� not valid for small periods of time t � � � because it assumes
that a quasi�steady�state distribution in the initial well is already reached and then the escape
over the barrier happens� so the initial transition to the quasi�steady�state is neglected� Namely�
this circumstance will lead to a slight distinction of the numerically simulated probability from its
exponential approximation �see the next section�� The asymptotical representation of the probability
density w���� t� for small periods of time was obtained in ���� and it has been demonstrated that
the time of transition to a quasi�steady�state in the initial well is really much smaller than the mean
decay time �����

VII� PROBABILITY EVOLUTION

Integrating probability density ����� with the account of de�nition ����� we get the following
expression for the probability P ���� t� that decay of the �correct� state of a memory cell will not
occur until some time t �� � �u�	��

P ���� t� �
exp��t�� � � �

�
� �
 �� ����

where the mean decay time � ���� is two times smaller than the Kramers� time ���� and thus formula
���� completely coincides with ����� Actually� the validity of formula ���� coincides with validity of
formula ����� and as previous calculations demonstrate� formula ���� is valid up to � � �� Our aim
was to numerically test this fact for formula ����� We used the usual explicit di
erence scheme to
solve the Fokker�Planck equation ���� assuming the re�ecting boundary conditions G��d� t� � � to
be far from the potential minima� instead of natural boundary conditions ����� Note� that we located
re�ecting boundaries far enough from the potential minima and controlled it carefully� thus even for
the large noise intensity �indicated below� the in�uence of re�ecting boundaries on the di
usion
process was negligible� Comparing the computer simulation results with formula ����� we have
substituted exact mean decay time � ���� �� ���� for asymptotic formula ���� and have found a really
close coincidence between the curves� even for a noise intensity larger than unity� where formula ����
is not valid �see Fig���� Figure � presents the numerically simulated nondecay probability P ���� t�
and the approximate one versus dimensionless time t� � �c � t� The potential barrier height and the
dimensionless inductance are� respectively� �u � ��
� � � �� The maximal di
erence 
 between the
corresponding curves is� 
 � ��	#� 	 � ���� 
 � �#�	 � ��
� 
 � �#� 	 � ��	� 
 � ���#� 	 � ����

 � 
#� 	 � �� 
 � �#� 	 � �� 
 � �#� 	 � �� 
 � �#� 	 � ���
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FIG� �� Evolution of the nondecay probability for di�erent values of noise intensity�

So� we have demonstrated that the approximate model of exponential decay of the �correct� state
of a memory cell is applicable with a good precision even for a large noise intensity �large enough for
real applications� when the considered system can not already be used for storage of information�� if
the approximate decay time is replaced by the exact one� The presented theory may be easily used
for design and analysis of real devices�
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I� STOCHASTIC RESONANCE� INTRODUCTION

Over the last two decades� stochastic resonance has continuously attracted considerable attention�
The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble
input information �such as a weak signal� can be ampli�ed and optimized by the assistance of noise�
Following the review ���� the e	ect requires three basic ingredients
 �i� an energetic activation barrier
or� more generally� a form of threshold� �ii� a weak coherent input �such as a periodic signal�� �iii�
a source of noise that is inherent in the system� or that adds to the coherent input� Given these
features� the response of the system undergoes resonance�like behavior as a function of the noise level�
hence the name 
stochastic resonance
� The underlying mechanism is fairly simple and robust� As a
consequence� stochastic resonance has been observed in a large variety of systems� including bistable
ring lasers� semiconductor devices� chemical reactions� and mechanoreceptor cells in the tail fan of
a cray�sh�
In the present lecture we consider some basic statements of theory of stochastic resonance� following

fresh review ���� It is necessary to mention� that as was recently demonstrated ���� the existance of
a threshold is not necessary for observation of stochastic resonance�

II� STOCHASTIC RESONANCE� BRIEF DESCRIPTION

The mechanism of stochastic resonance is simple to explain� Consider a heavily damped particle
of mass m and viscous friction h� moving in a symmetric double�well potential V �x� �see Fig� ��a��
where given a sketch of the double�well potential V �x� � �����bx�������ax�� the minima are located

at �xm� where xm �
q
a�b� these minima are separated by a potential barrier with the height given

by �V � a����b�� the barrier top is located at xb � ��� The particle is subject to �uctuational
forces that are� for example� induced by coupling to a heat bath� Such a model we considered during
our course� The �uctuational forces cause transitions between the neighboring potential wells with
a rate given by the Kramers rate ��� �inverse of the Kramers� time� see lecture ��� i�e��

rK �

q
V ���xm�jV ���xb�j

��h
e��V�D� ���

where �V � V �xb� � V �xm� is the height of the potential barrier separating the two minima� as D
is denoted the noise intensity D � kT �let me mention� that noise intensity should also depend on
viscosity� but in the present consideration under noise intensity we will mean namely this quantity
D��
If we apply a weak periodic forcing to the particle� the double�well potential V �x� t� � V �x� �

A�x cos��t� is tilted asymmetrically up and down� periodically raising and lowering the potential
barrier� this cyclic variation is shown in Fig� ��b�� Although the periodic forcing is too weak to let the
particle roll periodically from one potential well into the other one� noise�induced hopping between
the potential wells can become synchronized with the weak periodic forcing �strictly speaking� this
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holds true only in the statistical average�� This statistical synchronization takes place when the
average waiting time �Kramers� time� �K�D� � ��rK between two noise�induced interwell transitions
is comparable with half the period T� of the periodic forcing� This yields the time�scale matching
condition for stochastic resonance� i�e��

��K�D� � T�� ���

FIG� �� Symmetric double�well potential	 a� without applied periodic force and b� with applied periodic force�

In short� stochastic resonance in a symmetric double�well potential manifests itself by a synchro�
nization of activated hopping events between the potential minima with the weak periodic forcing
���� For a given period of the forcing T�� the time�scale matching condition can be ful�lled by tuning
the noise level Dmax to the value determined by Eq� ����
The concept of stochastic resonance was originally put forward in the seminal papers by Benzi and

collaborators �see� e�g�� ���� ���� wherein they address the problem of the periodically recurrent ice
ages� This very suggestion that stochastic resonance might rule the periodicity of the primary cycle
of recurrent ice ages was raised independently by C� Nicolis and G� Nicolis � ���� ���� ���� ������ A
statistical analysis of continental ice volume variations over the last ��� yr shows that the glaciation
sequence has an average periodicity of about ��� yr� This conclusion is intriguing because the only
comparable astronomical time scale in earth dynamics known so far is the modulation period of its
orbital eccentricity caused by planetary gravitational perturbations� The ensuing variations of the
solar energy in�ux �or solar constant� on the earth surface are exceedingly small� about ����� The
question climatologists �still� debate is whether a geodynamical model can be devised� capable of
enhancing the climate sensitivity to such a small external periodic forcing� Stochastic resonance
provides a simple� although not conclusive answer to this question� In the model of Benzi et al��
the global climate is represented by a double�well potential� where one minimum represents a small
temperature corresponding to a largely ice�covered earth� The small modulation of the earth�s orbital
eccentricity is represented by a weak periodic forcing� Short�term climate �uctuations� such as the
annual �uctuations in solar radiation� are modeled by Gaussian white noise� If the noise is tuned
according to Eq� ���� synchronized hopping between the cold and warm climate could signi�cantly
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enhance the response of the earth�s climate to the weak perturbations caused by the earth�s orbital
eccentricity� according to arguments by Benzi et al� A �rst experimental veri�cation of the stochastic
resonance phenomenon was obtained by Fauve and Heslot ����� who studied the noise dependence
of the spectral line of an ac�driven Schmitt trigger� The �eld then remained somewhat dormant
until the modern age of stochastic resonance was ushered in by a key experiment in a bistable ring
laser� Soon after� prominent dynamical theories in the adiabatic limit and in the full nonadiabatic
regime have been proposed� Moreover� descriptions in terms of the linear�response approximation
have frequently been introduced to characterize stochastic resonance�
Over time� the notion of stochastic resonance has been widened to include a number of di	erent

mechanisms� The unifying feature of all these systems is the increased sensitivity to small per�
turbations at an optimal noise level� Under this widened notion of stochastic resonance� the �rst
non�bistable systems discussed were excitable systems� In contrast to bistable systems� excitable
systems have only one stable state �the rest state�� but possess a threshold to an excited state which
is not stable and decays after a relatively long time �in comparison to the relaxation rate of small
perturbations around the stable state� to the rest state� Soon afterwards� threshold detectors were
discovered as a class of simple systems exhibiting stochastic resonance� In the same spirit� stochastic�
resonance�like features in purely autonomous systems have been reported� The framework developed
for excitable and threshold dynamical systems has paved the way for stochastic resonance applica�
tions in neurophysiology
 stochastic resonance has been demonstrated in mechanoreceptor neurons
located in the tail fan of cray�sh and in hair cells of crickets�
In the course of an ever�increasing �ourishing of stochastic resonance� new applications with novel

types of stochastic resonance have been discovered� and there seems to be no end in sight� Most
recently� the notion of stochastic resonance has been extended into the domain of microscopic and
mesoscopic physics by addressing the quantum analog of stochastic resonance and also into the
world of spatially extended� pattern�forming systems �spatiotemporal stochastic resonance�� Other
important extensions of stochastic resonance include stochastic resonance phenomena in coupled
systems and stochastic resonance in deterministic systems exhibiting chaos� Stochastic resonance is
by now a well�established phenomenon�

III� CHARACTERIZATION OF STOCHASTIC RESONANCE� A GENERIC MODEL

Having elucidated the main physical ideas of stochastic resonance in the preceding section� we
next de�ne the observables that actually quantify the e	ect� These observables should be physically
motivated� easily measurable� and�or be of technical relevance� In the seminal paper ���� stochastic
resonance was quanti�ed by the intensity of a peak in the power spectrum� Observables based on
the power spectrum are indeed very convenient in theory and experiment� since they have immediate
intuitive meaning and are readily measurable� In the neurophysiological applications of stochastic
resonance another measure has become fashionable� namely the interval distributions between acti�
vated events such as those given by successive neuronal �ring spikes or consecutive barrier crossings�
We follow here the historical development of stochastic resonance and discuss important quanti�ers
of stochastic resonance based on the power spectrum�
We consider the overdamped motion of a Brownian particle in a bistable potential in the presence

of noise and periodic forcing


dx

dt
� �V ��x� �A� cos��t� �� � ��t�� ���

where V �x� denotes the re�ection�symmetric quartic potential
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V �x� � �a
�
x� �

b

�
x�� ���

By means of an appropriate scale transformation� the potential parameters a and b can be elimi�
nated such that Eq� ��� assumes the dimensionless form

V �x� � ��

�
x� �

�

�
x�� ���

In Eq� ��� ��t� denotes a zero�mean� Gaussian white noise with autocorrelation function

� ��t����� 	� �D
�t�� ���

and intensity D� The potential V �x� ��� is bistable with minima located at �xm� with xm � �� The
height of the potential barrier between the minima is given by �V � ��� �see Fig� ��a��� In the
absence of periodic forcing� x�t� �uctuates around its local stable states with a statistical variance
proportional to the noise intensity D� Noise�induced hopping between the local equilibrium states
with the Kramers rate

rK �
�p
��

e��V�D� ���

enforces the mean value � x�t� 	 to vanish�
In the presence of periodic forcing� the re�ection symmetry of the system is broken and the mean

value � x�t� 	 does not vanish� This can be intuitively understood as the consequence of the
periodic biasing towards one or the other potential well�

A� The periodic response

For convenience� we choose the phase of the periodic driving � � �� i�e�� the input signal reads
explicitly A�t� � A� cos��t�� The mean value � x�t�jx�� t� 	 is obtained by averaging the inhomo�
geneous process x�t� with initial conditions x� � x�t�� over the ensemble of the noise realizations�
Asymptotically �t����� the memory of the initial conditions gets lost and � x�t�jx�� t� 	 becomes
a periodic function of time� i�e�� � x�t� 	as�� x�t�T�� 	as with T� � ����� For small amplitudes�
the response of the system to the periodic input signal can be written as

� x�t� 	as� �x cos��t� ���� ���

with amplitude �x and a phase lag ��� Approximate expressions for the amplitude and phase shift
read

�x�D� �
A� � x� 	�

D

�rKq
�r�K � ��

� ���

and

���D� � arctan
�

�

�rK

�
� ����

where � x� 	� is the D�dependent variance of the stationary unperturbed system �A� � ��� Equa�
tions �������� have been shown to hold in leading order of the modulation amplitude A�xm�D for
both discrete and continuous one�dimensional systems ���� Let us notice here that Eq� ��� allows
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within the two�state approximation� i�e�� � x� 	�� x�m� a direct estimate for the noise intensityDSR

that maximizes the output �x versus D for �xed driving strength and driving frequency�
The �rst and most important feature of the amplitude �x is that it depends on the noise strength

D� i�e�� the periodic response of the system can be manipulated by changing the noise level� At a
closer inspection of Eqs� ��������� we note that the amplitude �x �rst increases with increasing noise
level� reaches a maximum� and then decreases again� This is the celebrated stochastic resonance
e	ect� In Fig� �� we show the result of a simulation of the double�well system �Eqs� ��� ���� for
several weak amplitudes of the periodic forcing A�� Upon decreasing the driving frequency �� the
position of the peak moves to smaller noise strength�

FIG� �� Amplitude 
x�D� of the periodic component of the system response vs the noise intensity D �in units of �V � for
the following values of the input amplitude	 A�xm��V � ��� �triangles�� A�xm��V � ��� �circles�� and A�xm��V � ���
�diamonds� in the quartic double�well potential with a � ���s��� xm � �� �in units �x� used in the experiment�� and � � ���s���

Next we attempt to assign a physical meaning to the value ofDSR� The answer was given originally
by Benzi and co�workers ���� ���
 an unperturbed bistable system with A� � � switches spontaneously
between its stable states with rate rK� The input signal modulates the symmetric bistable system�
making successively one stable state less stable than the other over half a period of the forcing�
Tuning the noise intensity so that the random�switching frequency rK is made to agree closely with
the forcing angular frequency �� the system attains the maximum probability for an escape out of
the less stable state into the more stable one� before a random back switching event takes place�
When the noise intensity D is too small �D � DSR�� the switching events become very rare� thus
the periodic component�s� of the interwell dynamics are hardly visible� Under such circumstances�
the periodic component of the output signal x�t� is determined primarily by motion around the
potential minima  the intrawell motion� A similar loss of synchronization happens in the opposite
case when D � DSR
 The system driven by the random source �ips too many times between its
stable states within each half forcing period for the forced components of the interwell dynamics to
be statistically relevant�
In this spirit� the time�scale matching condition in Eq� ���� which with �K � ��rK is recast

as � � �rK� provides a reasonable condition for the maximum of the response amplitude �x�D��
Although the time�scale matching argument yields a value for DSR that is reasonably close to the
exact value it is important to note that it is not exact� Within the two�state model� the value DSR

obeys the transcendental equation

�r�K�DSR� � ����V�DSR � ��� ����

obtained from Eq� ���� The time�scale matching condition obviously does not ful�ll Eq� ����� thus
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underpinning its approximate nature�
The phase lag �� exhibits a transition from �� � ��� at D � �� to �� � � in the vicinity of DSR� By

taking the second derivative of the function �� in Eq� ���� and comparing with Eq� ���� one easily
checks that DSR lies on the right�hand side of the point of in�ection of ��� being �����DSR� 	 ��
It is important to note that the variation of the angular frequency � at a �xed value of the noise

intensity D does not yield a resonance�like behavior of the response amplitude� This behavior is
immediately evident from Eq� ��� and also from numerical studies �for those who don�t trust the
theory��
Finally� we introduce an alternative interpretation of the quantity �x�D� due to Jung and Hanggi


the integrated power p	 stored in the delta�like spikes of spectral density S��� at �� is p	 � ��x��D��
Analogously� the modulation signal carries a total power pA � �A�

�� Hence the spectral ampli�cation
reads


 � p	�pA � ��x�D��A��
�� ����

In the linear�response regime ��������� 
 is independent of the input amplitude�

B� Signal�to�noise ratio

Instead of taking the ensemble average of the system response� it sometimes can be more convenient
to extract the relevant phase�averaged power spectral density S���� de�ned here as

S��� �

��Z
��

e�i�� �� x�t� � �x�t� 		 d�� ����

where the inner brackets denote the ensemble average over the realizations of the noise and outer
brackets indicate the average over the input initial phase �� In Fig� ��a� we display a typical
example of S��� �� � ���� for the bistable system� Qualitatively� S��� may be described as the
superposition of a background power spectral density SN ��� and a structure of delta spikes centered
at � � ��n���� with n � �������� � � �� The generation of only odd higher harmonics of the input
frequency are typical �ngerprints of periodically driven symmetric nonlinear systems ����� Since the
strength �i�e�� the integrated power� of such spectral spikes decays with n according to a power law
such as A�n

� � we can restrict ourselves to the �rst spectral spike� being consistent with the linear�
response assumption implicit in Eq� ���� For small forcing amplitudes� SN��� does not deviate
much from the power spectral density S�

N��� of the unperturbed system� For a bistable system with
relaxation rate �rK � the hopping contribution to S�

N ��� reads

S�
N ��� � �rK � x� 	� ���r

�
K � ���� ����
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FIG� �� Characterization of stochastic resonance� �a� A typical power spectral density S��� vs frequency � for the case of the
quartic double�well potential� The delta�like spikes at � � ��n������ � � ����� with n � �� �� and �� are displayed as �nite�size
histogram bins� �b� Strength of the �rst delta spike� and the signal�to�noise ratio SNR� vs D �in units of �V �� The arrow
denotes the D value corresponding to the power spectral density plotted in �a�� The other parameters are Axm��V � ����
a � ���s��� and xm � �� �in units �x� used in the experiment��

The spectral spike at � was veri�ed experimentally �see references in ���� to be a delta function� thus
signaling the presence of a periodic component with angular frequency � in the system response �Eq�
����� In fact� for Axm � �V we are led to separate x�t� into a noisy background �which coincides�
apart from a normalization constant� with the unperturbed output signal� and a periodic component
with � x�t� 	as as given by Eq� ��� ����� On adding the power spectral density of either component�
we easily obtain

S��� � ������x��D��
�� � �� � 
�� � ��� � SN���� ����

with SN ��� � S�
N��� �O�A�

�� and �x�D� given in Eq� ���� In Fig� ��b� the strength of the delta�like
spike of S��� �more precisely �x�D�� is plotted as a function of D� Stochastic resonance can be
envisioned as a particular problem of signal extraction from background noise� It is quite natural
that a number of authors tried to characterize stochastic resonance within the formalism of data
analysis� most notably by introducing the notion of signal�to�noise ratio �SNR� �see references in
����� We adopt here the following de�nition of the signal�to�noise ratio

SNR � �

�
�� lim
����

����Z
����

S���d�

�
��
	

SN ���� ����

Hence on combining Eqs� ���� and ����� the SN ratio for a symmetric bistable system reads in
leading order

SNR � ��A�xm�D��rK� ����

�



Note that the factor of � in the de�nition ���� was introduced for convenience� in view of the power
spectral density symmetry S��� � S����� The SN ratio SNR for the power spectral density plotted
in Fig� ��a� versus frequency � �� � ���� is displayed in Fig� ��b�� The noise intensity �DSR at
which SNR assumes its maximumdoes not coincide with the value DSR that maximizes the response
amplitude �x� or equivalently the strength of the delta spike in the power spectrum given by Eq� �����
As a matter of fact� if the prefactor of the Kramers rate is independent of D� we �nd that the SN
ratio of Eq� ���� has a maximum at

�DSR � �V��� ����

There are exist two generic models of stochastic resonance
 the periodically driven bistable two�
state system and the double�well system� The �rst one may be described by master equation and
the second one may be described in the terms of the Fokker�Planck equation� In the Fokker�Planck
description of stochastic resonance the Floquet approach and Linear�Response Theory are usually
used� For detailed description of these approaches one may see the review ����
Finally� I wish to present �gure from this review� demonstrating example of input�output synchro�

nization in the symmetric bistable system described by ��������

FIG� �� Example of input�output synchronization in the symmetric bistable system of Eqs� �������� �a� Varying the noise
intensity D with � held constant� The sampled signal shown with dashes is the input A�t� �arbitrary units�� The remaining
trajectories are the corresponding system output �in units of xm� for increasing D values �from bottom to top�� �b� E�ect of
varying � with D held constant� The three outputsamples x�t� �in units of xm� are displayed for increasing � values �from top
to bottom�� The parameters for �a� and �b� are A�xm��V � ���� a � ���s�� and xm � �a�b���� � ��� cf� in Fig� ��
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IV� WHAT STOCHASTIC RESONANCE CAN AND CANNOT DO

Because in past years there were a lot of speculations about stochastic resonance� as a conclusion
I wish to refer to the recent paper published by Dykman and McClintock in Nature� The title of the
paper is just 
What stochastic resonance can and cannot do
�
An important consequence of Linear�Response Theory� apposite to the recent correspondence �����

���� is that� for a system driven by a signal and Gaussian noise� the SNR at the output� Rout� does
not exceed that at the input� Rin� For a linear system Rout � Rin� and the SNR decreases with the
increasing noise intensity� For a nonlinear system the ratio Rout�Rin may be small� and then the
provision of additional noise can sometimes help to increase the SNR at the output� back towards
its value at the input� It is this latter e	ect which constitutes Stochastic Resonance�
Stochastic Resonance can ameliorate quite dramatically the SNR degradation of a noisy signal

caused by its transduction through a nonlinear element� It does not� however� provide a mechanism
whereby the SNR of the input signal can meaningfully be enhanced�

��� L�Gammaitoni� P�Hanggi� P�Jung and F�Marchesoni� Rev� Mod� Phys�� �� ������ ����
��� S�M�Bezrukov and I�Vodyanoy� Nature� ��� ������ ����
��� H�Kramers� Physica� � ������ ����
��� L�Gammaitoni� F�Marchesoni� et al�� Phys� Rev� Lett�� �� ������ ����
��� R�Benzi� A�Sutera and A�Vulpiani� J� Phys� A� �� ������ L����
��� R�Benzi et al�� Tellus� �� ������ ���
��� C�Nicolis� Sol�Phys� �� ������ ����
��� C�Nicolis� Tellus� �� ������ ��
��� C�Nicolis� J�Stat�Phys� �� ������ ��
���� C�Nicolis and G�Nicolis� Tellus� �� ������ ����
���� S�Fauve and F�Heslot� Phys� Lett� A� �� ������ ��
���� P�Jung and P�Hanggi� Europhys� Lett�� � ������ ����
���� M�I�Dykman and P�V�E�McClintock� Nature� ��� ������ ����
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I. RATCHET EFFECT: INTRODUCTION

In the present lecture we brie
y consider the e�ect, attracting now signi�cant attention. This

e�ect is called as "ratchet e�ect" and is also known as "molecular motor" or "Brownian motor".

The present lecture is based on recent reviews [1], [2].

A "stochastic ratchet" is a process in which unoriented nonequilibrium 
uctuations and a spatially

anisotropic periodic potential conspire to produce direct motion. Transport in ratchet-like potentials

provides a mechanism for the transformation of nonequilibrium 
uctuations into useful work. By

"ratchet-like" we mean a potential that is periodic, but spatially anisotropic. Under the in
uence of

the 
uctuations in the environment, the potential felt by a particle randomly switches between two

or more possible con�gurations. The resulting current generated by these systems depends not only

on the spatial asymmetry of the potenital, but also on the statistical properties of the nonequilibrium


uctuations.

Recent motivation of study these types of systems comes from the theoretical modeling of the

molecules kinesin and myosin, which posesses the ability to move unidirectionaly along structural

�laments such as microtubulin and actin. Modern biology has shown that an important number

of biological processes are governed by the action of molecular complexes reminiscent in some way

of macroscopic machines [3], [4]. For instance, the words "channels" and "pumps" are commonly

used to describe protein aggregates promoting, respectively, passive and active transport of ions and

molecules across biological membranes, whereas the word "motor" is used for proteins or protein

complexes that transduce at a molecular scale chemical energy into mechanical work. Both rotatory

and translationary motors are known to exist. In this lecture, we brie
y give qualitative and simple

description, which allows one to extract the main features of the physics involved, deliberately

avoiding the biological complexity.

From a theoretical point of view, molecular motors are microscopic objects that unidirectionally

move along one-dimensional periodic structures. The problem of explaining this unidirectionality

belongs to a larger class of such problems involving rectifying processes at small scale. A simple

model of such a process is a generalization of Feynman's famous "thermal ratchet" [5]. Buttiker [6]

and Landauer [7] showed that a periodic distribution of temperatures with the proper asymmetry

was su�cient to induce macroscopic motion of a particle in a periodic potential via a recti�cation

mechanism of the random Brownian forces. However, any temperature inhomogeneity at the scale of

a few tens of nanometers decays on time scales of microseconds, so that even though the developed

concept is very attractive it cannot be retained for describing motors at the nanometer scale. Various

isothermal rectifying processes have been discussed. For instance in the context of biophysics they

were invoked both for the function of ion pumps [8] and for the translocation of proteins [9]. Periodic

isothermal ratchets have been discussed from di�erent perspectives [10], [11]. We can distinguish

three di�erent approaches.

(i) Fluctuating forces: a pointlike particle is placed in a periodic, asymmetric potential W (x) and

is submitted to a 
uctuating force that does not satisfy a 
uctuation-dissipation theorem. Typically

the particle motion is described by the Langevin equation
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�

dx

dt

= �W

0

(x) + F (t); (1)

where � is a constant friction coe�cient, x is the position of the particle, and W (x) is the potential

energy it experiences. The 
uctuating force F (t) has zero averaged value, < F (t) >= 0, but

has richer correlation functions than a simple Gaussian white noise. These correlations of the


uctuating forces re
ect the energy source: their structure depends for example on the complexity

of an underlying chemical process. As soon as the 
uctuation-dissipation theorem is broken, a

recti�ed motion sets in with a direction that depends in a subtle manner on the details of the

statistics. In principle, inertial terms could be added in Eq. (1). The motion of a massive particle

subject to a 
uctuating force is a beautiful theoretical problem. We shall not go into this subject

here: indeed, the characteristic crossover time between underdamped and overdamped behavior is

of the order of a few picoseconds on the 10-nm scale.

(ii) Fluctuating potentials: A pointlike particle is placed in a periodic, asymmetric potential with

a value that depends on time:

�

dx

dt

= �W

0

(x) + f(t); (2)

x, �, and W keep the same meaning as in Eq. (1) but the potential W depends explicitly on time,

and the random forces f(t) are Gaussian white noise which obeys a 
uctuation-dissipation theorem:

< f(t) >= 0; < f(t)f(t

0

) >= 2�k

B

T�(t� t

0

): (3)

The energy source is now implicit in the time dependence of the potential W . Most works have

considered the case in which W (x; t) = A(t)V (x) (see references given in [1]). If A(t) is a random

variable which can adopt two di�erent values and if the distribution of residence times at each value

is given by a Poisson distribution, Eq. (2) corresponds to the motion of a particle 
uctuating between

di�erent states for which the transition rates between states are constant.

(iii) Particle 
uctuating between states: In each of the states, the "particle" experiences a classical

Langevin equation:

�

i

dx

dt

= �W

0

i

(x) + f

i

(t): (4)

Here, the index i refers to the considered state, i = 1; :::; N , and f

i

(t) satis�es a 
uctuation-dissipation

theorem:

< f

i

(t) >= 0; < f

i

(t)f

j

(t

0

) >= 2�

i

k

B

T�(t� t

0

)�

ij

: (5)

The dynamics of transitions between the states have to be added independently, which is most

conveniently done in a Fokker-Planck formalism, as will be discussed below. Recti�cation is obtained

only to the extent that at least one of the transitions does not satisfy detailed balance. Although

approaches (i) to (iii) may di�er in the details of the recti�cation process, they share in common

their main features. Aiming at a more realistic description on the molecular level, several authors

have added internal variables (which become necessary if the time required to achieve, for instance, a

conformational change is not small compared to other time scales), in particular in order to quantify

the signi�cance of correlations between the two heads of the motors (see [12]- [15]). Such models

often aim at describing more closely speci�c features of particular biological motors, such as the

two-head walk of kinesin or the power stroke of myosin.
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II. A TWO-STATE MODEL FOR A SINGLE MOTOR

We shall now discuss a concrete model for force generation and motion of linear molecular motors.

We restrict our analysis to a two-state model [1], in which the fuel consumption triggers a confor-

mational change between two states 1 and 2. Transitions between these states are described by

standard chemical kinetics. For each of the states, a position-dependent one-dimensional potential

can be de�ned in the following way: The motor is allowed to �nd its equilibrium position close to

the �lament with the constraint that the x coordinate of the center of mass is given. The free energy

of the motor in state i con�ned at point x de�nes the potential W

i

(x). This de�nition implies that

the symmetry of the �lament is re
ected in the symmetry of the potentials: W

i

(x) is both periodic

and asymmetric. Note that this potential is de�ned for any x, irrespective of the range of inter-

actions involved. The variations of this potential can in principle be estimated by measuring the

force required to maintain the particle at the prescribed position x. An experiment along these lines

suggests that the distance between minimum and maximum is of the order of 3 nm for actin/myosin

(Nishizaka et al., 1995), but in general the potential shape is unknown.

FIG. 1. Schematic picture of the two l-periodic asymmetric potentials. Although the two potentials are 
at on a larger scale,

motion is expected when the ratio of transition rates !

1

=!

2

is driven away from its equilibrium value given by Eq. (11).

In order to develop a stochastic description of the dynamics, we introduce the probability density

P

i

(x; t) for the motor to be at position x at time t in state i. This periodic system with period l is

shown schematically in Fig. 1. The evolution of the system can be described by two Fokker-Planck

equations with source terms:

@

t

P

1

+ @

x

J

1

= �!

1

(x)P

1

+ !

2

(x)P

2

; (6)

@

t

P

2

+ @

x

J

2

= !

1

(x)P

1

� !

2

(x)P

2

; (7)

where the currents result from di�usion, interaction with the �lament, and the action of a possible

external force f

ext

:

J

i

= �

i

[�k

B

T@

x

P

i

� P

i

@

x

W

i

+ P

i

f

ext

]: (8)

Here �

i

is the chemical potential.

The source terms are determined by the rates !

i

(x) at which the motor switches from one state to

the other. The functions !

i

(x) again have the symmetry properties of the �lament. The set of Eqs.
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(6)-(8) can be used not only to illustrate the motion of molecular motors but also to show explicitly

in terms of an e�ective one-dimensional equation how this motion and force generation emerge. This

e�ective description is obtained by evaluating the steady-state particle current J = J

1

(x) + J

2

(x)

for l-periodic P

i

(x). Introducing P = P

1

+ P

2

and �(x) = P

1

(x)=P (x), it takes the form

J = �

eff

[�k

B

T@

x

P � P@

x

W

eff

+ Pf

ext

]: (9)

with an e�ective mobility given by �

eff

= �

1

� + �

2

(1� �) and an e�ective potential that reads

W

eff

(x

0

)�W

eff

(0) =

x

0

Z

0

dx

�

1

�@

x

W

1

+ �

2

(1 � �)@

x

W

2

�

1

�+ �

2

(1 � �)

+ k

B

T [ln(�

eff

)]

x

0

0

: (10)

One can show that, with periodic boundary conditions, �(x) has the potential symmetry. So if

the potential is symmetric, the integrand in Eq. (10) is antisymmetric and the e�ective potential

is periodic: W

eff

(nl) = W

eff

(0) for integer n. It is thus 
at on large scales and cannot generate

motion.

FIG. 2. Schematic picture of the e�ective potential W

eff

(x) acting on the particle if the transition rates between the two

states do not obey detailed balance.

For asymmetric potentials, the e�ective potential generically has a nonzero average slope [W

eff

(l)�

W

eff

(0)]=l on large scales (see Fig. 2), although W

1

and W

2

are 
at on large scales (see Fig. 1).

This average slope corresponds to an average force that the motor develops, able to generate motion

against weaker external forces f

ext

. However, this average force exists (i.e., the system operates as a

motor) only if the system consumes chemical energy. If no energy is provided to the system, detailed

balance has to be satis�ed:

!

1

(x) = !

2

(x) exp

"

W

1

(x)�W

2

(x)

k

B

T

#

: (11)

As a consequence � = (1 + exp [(W

1

(x)�W

2

(x))=k

B

T ])

�1

and W

eff

is the l-periodic free energy

of the motor, which is obviously 
at on large scales. Thus breaking detailed balance is also a clear

requirement for spontaneous motion.

As already discussed, in biological systems detailed balance is broken most of the time by ATP

hydrolysis. Let us assume that an hydrolysis event triggers, say, the change of the motor from state

1 to state 2 (the other choice would give similar results). Let us construct a quantity measuring the

local deviation from detailed balance:
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(x) = !

1

(x)� !

2

(x) exp

"

W

1

(x)�W

2

(x)

k

B

T

#

: (12)

For practical purposes, we write 
(x) = 
�(x), where the perturbation amplitude 
 measures the

distance to equilibrium and

l

R

0

�(x)dx is normalized to one.

As a result of broken detailed balance, the motor begins to move on average and can work me-

chanically against a load as described by Eqs. (9) and (10). Its average velocity v is determined

by J = v

l

R

0

dxP (x)=l. However, to get explicit expressions for the velocity and the e�ciency of the

process, one needs to calculate �(x) and thus solve Eqs. (6)-(8). It is then necessary to specify the

potential shapes in order to get speci�c results.

Two interesting limits can be identi�ed: a homogeneous perturbation �(x) = 1=l, or a perturbation

"localized" in the vicinity of the minima of W

1

, �(x) =

P

n

�(x�x

0

+nl). The latter case corresponds

to the notion of "active sites" in biology: it tells us that the (ATP-assisted) transition from state

1 to 2 is basically impossible, except when the protein is at a speci�c location along the �lament.

Independent of any detailed calculation, it is easy to show that the behavior of the spontaneous

velocity v (f

ext

= 0) as a function of the excitation rate 
 di�ers fundamentally in these two cases

(Fig. 3).

FIG. 3. Schematic diagram of the spontaneous average velocity v (for zero external force f

ext

= 0) of the particle as a

function of 
, which measures the departure from equilibrium and is related to the fuel concentration.

In the �rst case of a homogeneous perturbation, a well-de�ned velocity maximum occurs at a given

value of 
. Indeed, for low excitation rates, the system is close to thermodynamic equilibrium and v

grows linearly with 
 starting from zero at 
 = 0 in agreement with linear-response theory. At very

large 
, only state 2 is populated, which restores a Boltzmann distribution in this state, so that in

the absence of an external force the velocity vanishes as 1=


3

. The maximum velocity is obtained

when two pairs of characteristic times are matched. This can be understood in the case of a constant

potentialW

2

(Fig. 4): suppose the particle starts from an energy minimumof the ground state 1 and

gets excited to state 2. In this state it will undergo a di�usion process, which will lead after a time t

to a Gaussian probability distribution with halfwidth (2k

B

T�

2

t)

1=2

. After a typical lifetime �

2

= !

�1

2

,

the particle will return to the ground state. Depending on whether this transition takes place on the

right or the left of the maximum of W

1

(x), the process will contribute to net motion (to the right)

or not, as shown in Fig. 4. We want the number of favorable events contributing to the net motion

5



to be as large as possible: A short lifetime �

2

would yield a small contribution to motion but letting

the di�usive stage last too long would allow the particle to jump to the left with an appreciable

probability too. So, in scaling form, optimal conditions read �

2

� a

2

=(k

B

T�

2

) (for the de�nition of

the length a, see Fig. 4). Now we want the particle that moved over the barrier to have su�cient time

in state 1 to drift down the potential slope to reach the next minimum. Since waiting there would

lead to a loss of time, the second time matching for optimization is �

1

= !

�1

1

= 


�1

� b

2

=(mu

1

W

1

).

This determines the value 


�

at which the maximum velocity is reached in Fig. 3.

FIG. 4. Motion generation for W

2

= const and f

ext

= 0: A particle trapped in state 1 is excited to state 2, where it di�uses

freely. It returns to state 1 after a typical lifetime !

�1

2

when it has a Gaussian probability distribution P

2

. With a probability

proportional to the hatched area of the Gaussian distribution, it arrives at the next minimum of W

1

provided it has su�cient

time in state 1 to slide to that minimum.

In the second case of highly localized excitations, there is no maximum in the v(
) curve. Indeed,

while the previously mentioned time matching in state 2 is still needed, particles will now always

drift downhill to the energy minimum of state 1 before being reexcited to state 2. The less time

spent in the minimum, the faster the cycle and the larger the velocity. Thus the maximum is pushed

towards 
 =1.

Note that in both cases a di�usive step is needed. This is due to the fact that in the situation of

Fig. 3, the particle has to escape from a valley by di�usion in either state 1 or state 2. Thus the case

considered in Fig. 4, where one of the potentials is 
at, allows for the fastest escape. If the mobilities

�

1

and �

2

are comparable, the velocity scale is consequently limited by the "slow" di�usive step,

so that a typical value is v

typical

= (�

2

!

2

=k

B

T )

1=2

, which under optimal conditions is equivalent to

v

typical

� a=�

2

� �

2

k

B

T=a. Using the approximations described above to get analytical results, one

can show that the maximum velocity is about twice as large for a localized perturbation as for a

homogeneous one, everything else being kept alike. Indeed, not every drift event down towards the

potential minimum is e�cient in the case of homogeneous perturbations, where particles may be

excited before actually reaching the minimum, whereas they are all e�cient in the other case.

Note �nally, that we have discussed here two extremes: a homogeneous perturbation �(x) = 1=l

and a perturbation localized to a point �(x) = �(xmod l), whereas in generalone expects a smoother

function of x. In this intermediate case, a maximum of the velocity still exists for �nite 
, but the

velocity does not vanish for large 
.

6



[1] F.Julicher, A.Ajdary and J.Prost, Rev. Mod. Phys., 69 (1997) 1269.

[2] C.R.Doering, Physica A, 254 (1998) 1.

[3] T.Kreis and R.Vale, Cytoskeletal and motor proteins, 1993 (Oxford University Press, New York).

[4] B.Alberts et al., The molecular biology of the cell, 1994 (Garland, New York).

[5] R.P.Feynman, R.B.Leighton and M.Sands, The Feynman Lectures on Physics, 1966 (Addison-Wesley, Reading, MA), Vol

I, Chap. 46.

[6] M.Buttiker, Z.Phys. B, 68 (1987) 161.

[7] R.Landauer, J.Stat.Phys., 53 (1988) 233.

[8] D.Astumian et al., Proc. Natl. Acad. Sci. USA, 84 (1987) 434.

[9] S.Simon, C.Peskin and G.Oster, Proc. Natl. Acad. Sci. USA, 89 (1992) 3770.

[10] C.R.Doering, Nuovo Cimento, 17 (1995) 685.

[11] R.D.Astumian, Science, 276 (1997) 917.

[12] A.Ajdari, J.Phys. I, 4 (1994) 1577.

[13] C.S.Peskin and G.F.Oster, Biophys. J. 68 (1995) 202.

[14] I.Derenyi and T.Vicsek, Proc. Natl. Acad. Sci. USA, 93 (1996) 6755.

[15] T.Duke and S.Leibler, Biophys. J., 71 (1996) 1235.

7



Шумы и флуктуации в джозефсоновских системах
Лекция 11. Флуктуации в автоколебательных системах,

форма и ширина линии генерации

А. Л. Панкратов
Институт физики микроструктур РАН ГСП 105,

Нижний Новгород, 603950, Россия. E-mail: alp@ipmras.ru

The determination of the spectral form of the oscillator signal may be considered in certain cases
as the final goal of investigation of influence of random forces on an oscillator. The existence of a
continuous part of the spectrum, even when it contains a quasi-monochromatic line, may restrict,
e.g., the detection of small signals located close to the oscillator frequency. The necessity of a
relatively exact knowledge of the spectrum is obvious in this case.

On the other hand, in a number of physical tasks the mechanism of broadening of the spectral
line is considered on the basis of a random frequency modulation. Therefore, the determination of
the spectral form of a signal with fluctuations in both amplitude and frequency is of independent
importance.

A unified method for finding the shape and the linewidth of the signal, in general having
correlated amplitude and frequency fluctuations, will be considered. The analysis is performed both
for stationary and nonstationary fluctuations in amplitude and frequency. The frequency fluctuations
will be considered in detail and the influence of correlated amplitude and frequency fluctuations on
the form of spectral line will be described.

A. Setup of the problem

1. The oscillation of any real oscillator has fluctuations of both amplitude and frequency. In general
case there is a correlation between these fluctuations. Existence of these fluctuations lead to the fact,
that the spectrum of the oscillator is not any more monochromatic line. The spectral line of the signal
takes certain, nonzero width and definite "form some definite dependence of spectral power density
as function of frequency.

Our task is determination of the form and the width of the spectral line of an oscillation on the
basis of given statistical characteristics of amplitude and frequency fluctuations.

2. Let us consider the oscillation of the form [1]:

z(t) = R0[1 + α(t)] cos[ω0t+ φ(t)], (1)

where R0, ω0 - mean constant values of the amplitude and the frequency. In order to consider z(t)
as a sinusoidal oscillation with variable amplitude and phase the functions α(t) and φ(t) should be
slow functions of time in comparison with cos(ω0t), that we will imply fulfilled. The random function
α(t) represents relative fluctuations of the amplitude and φ(t) - fluctuations of the phase that are
equal to:

φ(t) =

t∫
t0

ν(t)dt, (2)

where ν are fluctuations of frequency. Let us suppose that < α(t) >=< φ(t) >=< ν(t) >= 0,
and that we know correlation (or structural) functions Φα(τ), Φν(τ), Φαν(τ) and the corresponding
spectral densities Sα(ω), Sν(ω), S0

αν(ω), S1
αν(ω).

Our final goal is obtaining the spectral density Sz(ω) of the oscillation z(t). This spectral density,
that is counted from ω = ω0, we will also call the shape of spectral line, which will be considered in
the frequency range much smaller than ω0 due to slowness of α and φ.

Let us calculate the correlation function of the signal z(t), which is the signal of the second group.



2

• We will speak, that the signal z(t) belongs to the second group if its energy is infinite and the
quantity

Sz = lim
T→∞

1

2T

+T∫
−T

< z2(t) > dt, (3)

called the power of the signal, is a finite quantity. Few examples of the signal of the second group
are constant, sinusoidal signal, random stationary function and so on.

For the signal z(t) one has to introduce the correlation function of the second order that is defined
as:

Φz(τ) = lim
T→∞

1

2T

+T∫
−T

K[t, t+ τ ]dt. (4)

We define the power spectral density of the signal z(t) as

Sz(ω) =
1

2π

+∞∫
−∞

Φz(τ) cos(ωτ)dτ. (5)

If z(t) is a random stationary process with the given correlation function Kz[τ ], then the correlation
function of the second order looks like: Φz(τ) = Kz[τ ], i.e. coincide with the correlation function.

With the help of the formula (4), defining t+ τ = t′, α(t′) = α′, φ(t′) = φ′, φ′ − φ = ∆φ, we find:

Φz(τ) = lim
T→∞

1

2T

+T∫
−T

⟨
1

2
R2

0(1 + α + α′ + αα′)[cos(ω0τ +∆φ) + cos[ω0(t+ t′) + φ+ φ′]]
⟩
dt. (6)

It is easy to see, that the second term (cosine of sum) will not give contribution into Φz(τ), since it
visibly contains the current time. Transforming cosine, we get:

Φz(τ) = A0(τ) cos(ω0τ)− A1(τ) sin(ω0τ), (7)

where

A0(τ) =
1

2
R2

0 lim
T→∞

1

2T

+T∫
−T

⟨(1 + α + α′ + αα′) cos(∆φ)⟩ dt (8)

and

A1(τ) =
1

2
R2

0 lim
T→∞

1

2T

+T∫
−T

⟨(1 + α + α′ + αα′) sin(∆φ)⟩ dt (9)

are even and odd functions of τ , respectively.
We have got general definition of functions A0(τ) and A1(τ), valid both for stationary and

nonstationary fluctuations α(t) and ∆φ. The phase increment ∆φ is equal to:

∆φ = ∆φ(t) = φ(t+ τ)− φ(t) =

t+τ∫
t

ν(ξ)dξ (10)

and in general case of arbitrary fluctuations of frequency is nonstationary function of time.
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If α(t) and ∆φ are stationary and stationary conjuncted then instead of (8), (9) we have:

A0(τ) =
1

2
R2

0 ⟨(1 + α + α′ + αα′) cos(∆φ)⟩ , (11)

A1(τ) =
1

2
R2

0 ⟨(1 + α+ α′ + αα′) sin(∆φ)⟩ . (12)

3. Substituting (7) into (4), introducing frequency Ω = ω − ω0 and neglecting due to slowness of
α and φ by terms with cos(ω0 + ω)τ and sin(ω0 + ω)τ , we get:

Sz(ω0 + Ω) =
1

4π

+∞∫
−∞

A0(τ) cos(Ωτ)dτ +
1

4π

+∞∫
−∞

A1(τ) sin(Ωτ)dτ.

Let us proceed from the spectral density Sz(ω), extended both to positive and negative frequency
axes to the spectral density Gz(ω) defined only for positive frequency:

Gz(ω) =

{
0, ω < 0,
2Sz(ω), ω ≥ 0.

Defining Wz(Ω) = Gz(ω0+Ω), we get the following final expression for spectral density Wz(Ω) – the
form of spectral line of the oscillation:

Wz(Ω) = W 0
z (Ω) +W 1

z (Ω), (13)

where

W 0
z (Ω) =

1

2π

+∞∫
−∞

A0(τ) cos(Ωτ)dτ, (14)

W 1
z (Ω) =

1

2π

+∞∫
−∞

A1(τ) sin(Ωτ)dτ. (15)

It is seen from (13) that in general case Wz(Ω) is not an even function of Ω, i.e. in general case the
spectral line of the signal is asymmetric relatively Ω = 0 (relatively the central frequency ω0), and
even W 0

z (Ω) and odd W 1
z (Ω) parts can be extracted.

It follows from (15) that asymmetry of the spectral line takes place for A1(τ) ̸= 0. Analyzing (9),
it is easy to see that if fluctuations of amplitude and frequency are statistically independent, then:

A1(τ) =
1

2
R2

0 lim
T→∞

1

2T

+T∫
−T

(1 +Kα[t, t+ τ ]) ⟨sin(∆φ)⟩ dt,

and this expression is different from zero if ⟨sin(∆φ)⟩ is different from zero. The latter depends on
the law of distribution of fluctuations of ν(t). If probabilistic distribution of fluctuations of frequency
is symmetric, it can be demonstrated that ⟨sin(∆φ)⟩ = 0. Therefore, the function A1(τ) may be not
equal to zero for asymmetric distribution of frequency fluctuations.

So, asymmetry of distribution of frequency fluctuations lead to asymmetry of the form of spectral
line of oscillations.
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If the distribution of ν(t) is symmetric (that is often true in practice) then only correlation between
α(t) and ν(t) may lead to A1(τ) ̸= 0 and, correspondingly, to asymmetric form of spectral line.

Let us note, that formulas (14) and (15) are presented in the most general form and they are valid
for any laws of distribution of α and ν and, therefore, it is rather difficult to make any concrete
conclusions about functions A0(τ) and A1(τ). The analysis of these functions and, correspondingly,
of Wz(Ω) is possible to perform for a few particular cases only, most of which will be considered
below.

B. Spectrum of a signal, having fluctuations of amplitude.

1. Let us consider for generality of presentation the simplest case when only amplitude fluctuations
of z(t) are present (fluctuations of frequency are absent, ν = 0):

z(t) = R0[1 + α(t)] cos(ω0t).

In this case ∆φ = 0 and it follows from (8), (9) that

A0(τ) =
1

2
R2

0[1 + Φα(τ)],

A1(τ) = 0.

Due to this, the spectrum Wz(Ω) of the signal is symmetric and is equal to:

Wz(Ω) = W 0
z (Ω) =

R2
0

2

1

2π

+∞∫
−∞

cos(Ωτ)dτ +
R2

0

2

1

2π

+∞∫
−∞

Φα(τ) cos(Ωτ)dτ.

The first integral is delta-function and the second one is equal to the spectral density of amplitude
fluctuations Sα(Ω). Therefore:

Wz(Ω) =
R2

0

2
δ(Ω) +

R2
0

2
Sα(Ω). (16)

In the expression obtained the first term represents monochromatic spectral line with the power R2
0/2,

and the second one – the symmetric pedestal of the line due to amplitude fluctuations. Therefore,
for R0 ̸= 0 amplitude fluctuations do not "wash out"the spectral line (its width remains equal to
zero) but only adds to the monochromatic line some pedestal with the form coinciding with the form
of spectrum of amplitude fluctuations.

Let now R0 = 0, but amplitude fluctuations do exist. This case may occur, in particular, when
oscillator is at the oscillation threshold and the mean amplitude is equai to zero. In this case for
obtaining the spectral density, instead of α(t) one should consider ∆R(t), because

R = R0 +∆R(t).

Since R0 = 0, performing calculations, we get that the spectrum of the signal coincides in form
with the spectrum of amplitude fluctuations. In this case it is generally possible to say that the
spectral line has a width equals the width of the spectrum of amplitude fluctuations.
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C. Spectrum of a signal, having random phase.

1. Let us consider the signal having only phase fluctuations:

z(t) = R0 cos(ω0t+ φ(t)).

In accordance with (8)-(9) we have:

A0(τ) =
R2

0

2
lim
T→∞

1

2T

+T∫
−T

⟨cos(∆φ)⟩ dt,

A1(τ) =
R2

0

2
lim
T→∞

1

2T

+T∫
−T

⟨sin(∆φ)⟩ dt.
(17)

Let us suppose, that the probabilistic distribution is normal (Gaussian). Then (since ⟨∆φ⟩ = 0)

⟨sin(∆φ)⟩ = 0,

⟨cos(∆φ)⟩ = exp
[
−1

2
⟨∆φ2⟩

]
= exp [−dφ[t, t; τ ]] ,

(18)

where dφ[t, t; τ ] is a statistical structural function:

dz[t1, t2; τ ] =
1

2
⟨[z(t1 + τ)− z(t1)][z(t2 + τ)− z(t2)]⟩ . (19)

In this case

A1(τ) = 0, A0(τ) =
R2

0

2
lim
T→∞

1

2T

+T∫
−T

exp[−dφ[t, t; τ ]]dt (20)

and the form of spectral line is symmetric. Let now fluctuations of phase have stationary increments
(∆φ is a stationary process); then

dφ[t, t; τ ] = dφ[0; τ ] = ∆φ(0, τ) ≡ χ(τ), (21)

and, correspondingly,

A0(τ) = A0
χ(τ) =

R2
0

2
exp[−χ(τ)], (22)

where

∆z(θ, τ) = lim
T→∞

1

2T

+T∫
−T

dz[t, t+ θ; τ ]dt (23)

is a structural function of the second kind. For random process with stationary increments

∆z(θ, τ) = dz[θ; τ ]. (24)

The form of the spectral line is, therefore:

Wz(Ω) = W 0
z (Ω) =

R2
0

4π

+∞∫
−∞

exp[−χ(τ)] cos(Ωτ)dτ (25)
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and is completely determined by the function χ(τ) – structural function of the second kind of
frequency fluctuations (variance of drift of the phase during the time τ).

The structural function χ(τ) has the following properties:
1) χ(0) = 0,
2) χ(τ) ≥ 0,
3) χ(τ) = χ(−τ).
The behaviour of χ(τ) for τ → ∞ significantly depends on the character of phase fluctuations. For

example, for stationary phase fluctuations, for which the correlation function exists for any τ , the
function χ(τ) is always restricted. For nonstationary phase fluctuations χ(τ) may infinitely grow for
τ → ∞. In the present paragraph we will consider the case of restricted χ(τ).

2. Let stationary fluctuations of the phase have finite intensity ⟨φ2⟩ = Φφ(0). Then on the basis
of definition of χ(τ) we have:

χ(τ) = Φφ(0)− Φφ(τ).

Therefore, the function χ(τ) is restricted due to restricted ⟨φ2⟩. The width of the function χ(τ) may
be expressed as 2τ0, where τ0 is actually correlation time of phase fluctuations. For the considered
case of restricted χ(τ) it is expedient to slightly change notations of functions A0

χ(τ) and W 0
zχ(τ).

We will write them as A0
φ(τ) and W 0

zφ(τ). The sense of these notations will become clear a bit below.
Let us represent the exponent in (25) in the form:

e−χ(τ) = e−Φφ(0)+Φφ(τ) = e−<φ2>+Φφ(τ) − e−<φ2> + e−<φ2> = e−<φ2>
[
eΦφ(τ) − 1

]
+ e−<φ2>. (26)

Then the integral (25) takes the form:

Wz(Ω) = W 0
z (Ω) =

R2
0

2
e−<φ2>δ(Ω) +

R2
0

2
e−<φ2> 1

2π

+∞∫
−∞

[
eΦφ(τ) − 1

]
cos(Ωτ)dτ. (27)

It is seen, that the spectrum of the signal consists from the monochromatic line of the power R2
0

2
e−<φ2>

and the pedestal equals the second term in (27).
Thus, stationary phase fluctuations as well as amplitude fluctuations do not dither spectral line

and create only an additional pedestal.

D. Spectrum of a signal, having fluctuations of frequency.

Distinguishing of cases of phase fluctuations φ(t) and frequency fluctuations ν(t) into two different
paragraphs is in some way nominal, since they are connected by relation:

φ(t) =
∫

ν(t)dt

and always simultaneously exist. Nevertheless, such distinguishing may be justified by the fact, that
spectra of signals, having fluctuations of phase and frequency with the same statistical characteristics
are significantly different. In the previous paragraph we have seen that stationary fluctuations of the
phase lead to the spectrum, consisting of monochromatic line and pedestal. It will be demonstrated
in the present paragraph that stationary fluctuations of frequency lead to dithering of spectral line;
the line is not any more monochromatic, but has some width ∆Ω > 0. This is due to infinity of the
function χ(τ) or infinity of more general characteristic – dφ[t, t; τ ] for τ → ∞.

Thus, the present paragraph will be different from the previous one: we will deal with such dφ[t, t; τ ]
which infinitely grows for τ → ∞.
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1. So, let us consider the signal, having frequency fluctuations:

z(t) = R0 cos
[
ω0t+

∫
ν(t)dt

]
.

Functions A0(τ), A1(τ) are given by formulas (17), ∆φ – phase increment durinng time τ – by
formula (10).

Let us suppose that fluctuations of frequency (or phase) are such, that there exists nonzero
linewidth ∆Ω. This linewidth may be defined by different ways. From the point of view of
mathematical analysis, the most efficient is the energetic definition. For that it is enough to define
the linewidth on the basis of even part of shape of the spectral line W 0

z (Ω). Let us substitute W 0
z (Ω)

by the rectangle with the equal square with the height W 0
z (0). Then the width of this rectangle we

take as the width of the spectral line ∆Ω.
The whole square under the curve W 0

z (Ω) (that is equal to the square under the curve Wz(Ω)) is
the energy of the signal z(t), equals R2

0/2. Therefore (see (14)),

∆Ω =
R2

0

2W 0
z (0)

=
πR2

0

2
∞∫
0
A0(τ)dτ

=
π

∞∫
0
dτ limT→∞

+T∫
−T

⟨cos(∆φ)⟩ dt
. (28)

If fluctuations of phase have stationary increments, then

∆Ω =
π

∞∫
0
< cos(∆φ) > dτ

. (29)

If in addition fluctuations are normally distributed, then:

∆Ω =
π

∞∫
0
exp[−χ(τ)]dτ

. (30)

The latter formula allows to find a condition for χ(τ), required for existence of dithering of a
linewidth.

If, e.g., χ(τ) is restricted for τ → ∞ (i.e. exist χ∞ < ∞), then it is easy to see, that the integral in
(30) diverges and, correspondingly, the width of the spectral line ∆Ω becomes zero. As it has been
demonstrated in previous paragraphs, this corresponds to monochromatic line in the spectrum of
z(t). Therefore, we indeed have ∆Ω = 0, if the spectrum of the signal contains a monochromatic
line.

In order to have ∆Ω > 0, the finity of the integral
∞∫
0
exp[−χ(τ)]dτ is needed, which leads to infinite

χ(τ) for τ → ∞. Therefore, the spectral width is dithered only in the case when χ(τ) → ∞
for τ → ∞.

This means that the spectral line may be dithered only by nonstationary phase fluctuations.
Indeed, since χ(τ) = dφ[0; τ ] =

1
2
⟨[φ(t+ τ)− φ(t)]2⟩, supposing, e.g., t = 0 and φ(0) = 0, we find

χ(τ) = 1
2
⟨φ(τ)2⟩. Indefinite increase of χ(τ) for τ → ∞ means here time dependence of ⟨φ(τ)2⟩ for

any τ as function of τ (nonstationarity of phase fluctuations).
Let us note also: higher increase of χ(τ) with τ – smaller integral in the denominator of (30) and

wider linewidth ∆Ω.
2. Let us start the analysis from the case when φ(t) is a process with stationary increments and

distribution of ν(t) is an arbitrary function. In this case

A0(τ) =
R2

0

2
⟨cos∆φ⟩ , A1(τ) =

R2
0

2
⟨sin∆φ⟩ (31)
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and components of the spectral line equal:

W 0
z (Ω) =

R2
0

4π

+∞∫
−∞

⟨cos∆φ⟩ cosΩτdτ,

W 1
z (Ω) =

R2
0

4π

+∞∫
−∞

⟨sin∆φ⟩ sinΩτdτ.
(32)

Let us consider the first limiting case: frequency fluctuations ν represents as slow as possible
stationary process. Let the distribution law of ν is arbitrary and the probability density equals
Wν(ν). For as slow as possible process

∆φ =

t+τ∫
t

ν(ξ)dξ = ντ.

From this we get:

A0(τ) =
R2

0

2
< cos ντ >=

R2
0

2

∫
cos ντWν(ν)dν =

R2
0

2

∫
W 0

ν (ν) cos ντdν,

A1(τ) =
R2

0

2
< sin ντ >=

R2
0

2

∫
sin ντWν(ν)dν =

R2
0

2

∫
W 1

ν (ν) sin ντdν,

where W 0
ν (ν) and W 1

ν (ν) are even and odd components of the probability density Wν(ν) = W 0
ν (ν)+

W 1
ν (ν). The obtained expressions demonstrate that A0(τ) is Fourier conjugated of W 0

ν (ν), and A1(τ)
- Fourier conjugated of W 1

ν (ν). On the other hand, formulas (14) and (15) shows that A0(τ) and
A1(τ) are Fourier conjugated of W 0

z (Ω) and W 1
z (Ω). Therefore, W 0

z (Ω) and W 1
z (Ω) are proportional

to W 0
ν (ν) and W 1

ν (ν), respectively. Defining the proportionality coefficient from the normalization
conditions, we get:

W 0
z (Ω) =

R2
0

2
W 0

ν (ν), W 1
z (Ω) =

R2
0

2
W 1

ν (ν).

Summing these equalities we get:

Wz(Ω) =
R2

0

2
Wν(ν). (33)

The form of spectral line of the signal, having as slow as possible frequency fluctuations, coincides
with the shape of their probability distribution. This case may be called "case of technical fluctuations
of frequency because, as it will be seen below, in oscillators slow quasistatic fluctuations of frequency
are mainly originated from flicker noise – "technical"reasons. On the basis of (28) the width of
spectral line is equal to ∆Ω = W−1

ν (0).
With the usual assumption of Gaussian frequency fluctuations we get well-known Doppler form

(or Gaussian, or technical form) of the spectral line equals

Wz(Ω) =
R2

0

2

1√
2π ⟨ν2⟩

e
− 1

2
Ω2

⟨ν2⟩ (34)

with the width

∆Ω =
√
2π ⟨ν2⟩, (35)
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where ⟨ν2⟩ is a variance of frequency fluctuations which is supposed to be known.
Let us consider now the second limiting case. Let us suppose, that fluctuations of frequency is a

delta-correlated stationary random process with the correlation function:

Φν(τ) = Dδ(τ);

and the distribution function of ν is arbitrary. In this case the phase increment ∆φ, given by Eq.
(10) represents a sum of infinitely large number of independent variables and therefore has normal
distribution independently of distribution of ν(t).

If frequency fluctuations ν(τ) represents stationary process and almost for all τ exist Φν(τ), then
it is not difficult to express χ(τ) via Φν(τ). It can be demonstrated that:

χ(τ) =
1

2

⟨
∆φ2

⟩
=

1

2

t+τ∫
t

t+τ∫
t

Φν(ξ − η)dξdη =
1

2

+τ∫
−τ

(τ − |ξ|)Φν(ξ)dξ. (36)

It is not difficult to express χ(τ) via spectral density Sν(ω) of frequency fluctuations. Substituting
into Eq. (36) the expression Φν(τ) via Sν(ω) and integrating over τ we get

1

2

⟨
∆φ2

⟩
= χ(τ) =

+∞∫
−∞

1− cosωτ

ω2
Sν(ω)dω = 2

+∞∫
−∞

sin2 ωτ

2
Sν(ω)

dω

ω2
. (37)

Besides properties of the function χ(τ), mentioned in the previous paragraph, on the basis of (36),
it is easy to discover the following properties:

d

dτ
χ(τ) =

τ∫
0

Φν(τ)dτ,

[
d

dτ
χ(τ)

]
τ=0

= 0. (38)

d2

dτ 2
χ(τ) = Φν(τ),

[
d2

dτ 2
χ(τ)

]
τ=0

=
⟨
ν2
⟩
. (39)

For delta-correlated frequency fluctuations we have from (36)

χ(τ) =
1

2
D|τ |.

This formula expresses the so-called diffusive law of phase fluctuations – the mean square of phase
increment during time τ is proportional to τ .

Due to Gaussian distribution of ∆φ we have

⟨cos(∆ϕ)⟩ = exp
[
−D

2
|τ |
]
, ⟨sin(∆ϕ)⟩ = 0.

Taking into account (32), one can finally obtain:

Wz(Ω) =
R2

0

4π

+∞∫
−∞

exp
[
−1

2
D|τ |

]
cosΩτdτ =

R2
0

2π

D/2

(D/2)2 + Ω2
. (40)

The obtained form of the line is well-known Lorentzian or resonant (or natural) form of spectral line.
As follows from the above presented, for its realization it is only necessary to assume delta-correlated
frequency fluctuations. On the basis of (30), the linewidth of this spectral line is equal to:

∆Ω =
πD

2
. (41)
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The consideration of the form of spectral line for arbitrary law of distribution of frequency
fluctuations is restricted by the two above mentioned cases.

3. Significantly more detailed analysis may be performed for normally distributed stationary
fluctuations of frequency. Let us consider this case. Let fluctuations of frequency ν(t) are stationary
and normally distributed, ⟨ν(t)⟩ = 0 with the given correlation function Φν(τ) and spectral density
Sν(Ω). On the basis of (10) the phase increment ∆φ will be stationary process, having normal
symmetric distribution. Therefore, the shape of spectral line will be described by Eq. (25) and the
width – by Eq. (30).

Combining (25) and (36) we get the following expression for the shape of spectral line:

Wz(Ω) =
R2

0

4π

+∞∫
−∞

exp

− τ∫
0

(τ − ξ)Φν(ξ)dξ

 cosΩτdτ, (42)

which we will analyze.
Let us consider, how different characteristics of frequency fluctuations influence the form of the

line Wz(Ω). Let us define the correlation time τ0 as:

τ0 =
1

2Φν(0)

+∞∫
−∞

Φν(τ)dτ =
πSν(0)

⟨ν2⟩
. (43)

Let us define the spectral width as Ω0 = τ−1
0 . Then it is obvious that

Ω0 =
1

π

⟨ν2⟩
Sν(0)

. (44)

Let the spectrum of fluctuations of frequency is such that: πSν(0) ≫ Ω0 (i.e. the spectrum is
narrow and tall). In this case with the help of (43), (44) we get that:

m ≡
⟨
ν2
⟩
τ 20 =

πSν(0)

Ω0

≫ 1. (45)

Let us call the quantity m the modulation index.
The case of m ≫ 1 is the case of slow (large τ0) and large (large variance ⟨ν2⟩) frequency

fluctuations. It can be demonstrated, that if the condition (45) is fulfilled the shape of the spectral
line is approximately equal to:

Wz(Ω) =
R2

0

2

1√
2π ⟨ν2⟩

exp

{
− Ω2

2 ⟨ν2⟩

}
,

i.e. coincides with the doppler form, which we already obtained above (see (34)) with supposition of
as slow as possible ν(t).

Thus, the first limiting case is approximately realized for πSν(0) ≫ Ω0.
Let now the spectrum of frequency fluctuations is such that πSν(0) ≪ Ω0. Then

m ≡< ν2 > τ 20 =
πSν(0)

Ω0

≪ 1, (46)

and we have the case of fast (small τ0) and small (small ⟨ν2⟩) frequency fluctuations. It can be
demonstrated that in this case the form of spectral line is approximately equal to (compare with
(40)):

Wz(Ω) =
R2

0

2π

⟨ν2⟩ τ0
(⟨ν2⟩ τ0)2 + Ω2

.
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Since ⟨ν2⟩ τ0 = πSν(0), then the form of spectral line is approximately equal to:

Wz(Ω) =
R2

0

2π

πSν(0)

(πSν(0))2 + Ω2
. (47)

This is resonant (Lorentzian) shape of line and its width equals:

∆Ω = π2Sν(0) = πmΩ0, (48)

i.e. it only depends on the value of spectral density of frequency fluctuations at zero frequency.
Thus, the second limit case leading to resonant form of spectral line is realized approximately for

πSν(0) ≪ Ω0, i.e. in this case the frequency fluctuations are rather fast. This kind of spectrum of
frequency fluctuations is generated either by thermal or shot fluctuations as it will be demonstrated
below.

[1] А.Н. Малахов, Флуктуации в автоколебательных системах - M.: Наука, 1968. - с. 660.


